Macaulay2 » Documentation
Packages » Matroids :: modularCut
next | previous | forward | backward | up | index | toc

modularCut -- associated to an elementary quotient or linear subclass

Synopsis

Description

This function is provided by the package Matroids.

An elementary quotient M of a matroid N is completely determined by a modular cut of flats of N. Given such an elementary quotient, this function produces the corresponding modular cut. See isModularCut for more details about modular cuts.

i1 : N = matroid completeGraph 4;
i2 : F = set {0, 1, 3};
i3 : TFN = truncate(F, N);
i4 : isElementaryQuotient(TFN, N)

o4 = true
i5 : modularCut(TFN, N)

o5 = {{0, 1, 3}, {0, 1, 2, 3, 4, 5}}

o5 : List

In turn, a modular cut K of the matroid M is completely determined by a collection of hyperplanes of M called a linear subclass. See isLinearSubclass for more details about linear subclasses. Given a list H of hyperplanes of M forming a linear subclass, the corresponding modular cut consists of all flats F of M such that every hyperplane containing F belongs to H.

i6 : A = matrix {{1, 0, 0, 1, 1}, {0, 1, 0, 1, -1}, {0, 0, 1, 0, 0}}

o6 = | 1 0 0 1 1  |
     | 0 1 0 1 -1 |
     | 0 0 1 0 0  |

              3       5
o6 : Matrix ZZ  <-- ZZ
i7 : M = matroid A

o7 = a "matroid" of rank 3 on 5 elements

o7 : Matroid
i8 : H = drop(hyperplanes M, 1)

o8 = {set {4, 2}, set {2, 3}, set {1, 2}, set {0, 2}}

o8 : List
i9 : isLinearSubclass(M, H)

o9 = true
i10 : modularCut(M, H)

o10 = {set {2}, set {4, 2}, set {2, 3}, set {1, 2}, set {0, 2}, set {0, 1, 2,
      -----------------------------------------------------------------------
      3, 4}}

o10 : List

See also

Ways to use modularCut:

For the programmer

The object modularCut is a method function with options.