Macaulay2 » Documentation
Packages » MonomialAlgebras :: MonomialAlgebra
next | previous | forward | backward | up | index | toc

MonomialAlgebra -- The class of all monomialAlgebras.

Description

The class of monomial algebras K[B] where B is a subsemigroup of \mathbb{N}^r.

You can create a monomial algebra via the function monomialAlgebra by either specifying

- the semigroup B as a list of generators. The field K is selected via the option CoefficientField.

- a list of positive integers which is converted by adjoinPurePowers and homogenizeSemigroup into a list B of elements of \mathbb{N}^2. The field K is selected via the option CoefficientField.

- a multigraded polynomial ring K[X] with Degrees R = B.

This data can be extracted as follows:

ring(MonomialAlgebra) returns the associated multigraded polynomial ring.

degrees(MonomialAlgebra) returns B.

Key functions:

Decomposition:

decomposeMonomialAlgebra -- Decomposition of a monomial algebra over the subalgebra corresponding to the convex hull of the degree monoid.

decomposeHomogeneousMA -- Decomposition of a homogeneous monomial algebra over the subalgebra corresponding to the convex hull of the degree monoid.

Ring-theoretic properties:

isCohenMacaulayMA -- Test whether a simplicial monomial algebra is Cohen-Macaulay.

isGorensteinMA -- Test whether a simplicial monomial algebra is Gorenstein.

isBuchsbaumMA -- Test whether a simplicial monomial algebra is Buchsbaum.

isNormalMA -- Test whether a simplicial monomial algebra is normal.

isSeminormalMA -- Test whether a simplicial monomial algebra is seminormal.

isSimplicialMA -- Test whether a monomial algebra is simplicial.

Regularity:

regularityMA -- Compute the regularity via the decomposition.

degreeMA -- Compute the degree via the decomposition.

codimMA -- Compute the codimension of a monomial algebra.

Methods that use a MonomialAlgebra:

  • affineAlgebra(MonomialAlgebra) -- see affineAlgebra -- Define a monomial algebra
  • binomialIdeal(MonomialAlgebra) -- see binomialIdeal -- Compute the ideal of a monomial algebra
  • codimMA(MonomialAlgebra) -- see codimMA -- Codimension of a monomial algebra.
  • decomposeHomogeneousMA(MonomialAlgebra) -- see decomposeHomogeneousMA -- Decomposition of one monomial algebra over a subalgebra
  • decomposeMonomialAlgebra(MonomialAlgebra) -- see decomposeMonomialAlgebra -- Decomposition of one monomial algebra over a subalgebra
  • degreeMA(MonomialAlgebra) -- see degreeMA -- Degree of a monomial algebra.
  • degrees(MonomialAlgebra) -- Generators of the degree monoid
  • findMonomialSubalgebra(MonomialAlgebra) -- see findMonomialSubalgebra -- Find monomial subalgebra corresponding to the convex hull.
  • isBuchsbaumMA(MonomialAlgebra) -- see isBuchsbaumMA -- Test whether a simplicial monomial algebra is Buchsbaum.
  • isCohenMacaulayMA(MonomialAlgebra) -- see isCohenMacaulayMA -- Test whether a simplicial monomial algebra is Cohen-Macaulay.
  • isGorensteinMA(MonomialAlgebra) -- see isGorensteinMA -- Test whether a simplicial monomial algebra is Gorenstein.
  • isNormalMA(MonomialAlgebra) -- see isNormalMA -- Test whether a simplicial monomial algebra is normal.
  • isSeminormalMA(MonomialAlgebra) -- see isSeminormalMA -- Test whether a simplicial monomial algebra is seminormal.
  • isSimplicialMA(MonomialAlgebra) -- see isSimplicialMA -- Test whether a monomial algebra is simplicial.
  • net(MonomialAlgebra) -- Pretty print for monomial algebras
  • regularityMA(MonomialAlgebra) -- see regularityMA -- Compute regularity from decomposition
  • ring(MonomialAlgebra) -- Multigraded polynomial ring associated to a monomial algebra

For the programmer

The object MonomialAlgebra is a type, with ancestor classes MutableHashTable < HashTable < Thing.


The source of this document is in MonomialAlgebras.m2:1234:0.