Macaulay2 » Documentation
Packages » Msolve :: msolveRealSolutions
next | previous | forward | backward | up | index | toc

msolveRealSolutions -- compute all real solutions to a zero dimensional system using symbolic methods

Synopsis

Description

This functions uses the msolve package to compute the real solutions to a zero dimensional polynomial ideal with either integer or rational coefficients.

The second input is optional, and indicates the alternative ways to provide output either using an exact rational interval QQi, a real interval RRi, or by taking a rational or real approximation of the midpoint of the intervals.

i1 : R = QQ[x,y]

o1 = R

o1 : PolynomialRing
i2 : I = ideal {(x-1)*x, y^2-5}

             2       2
o2 = ideal (x  - x, y  - 5)

o2 : Ideal of R
i3 : rationalIntervalSols = msolveRealSolutions I

               1           1        4801919417  9603838835      4294967295 
o3 = {{{- ----------, ----------}, {----------, ----------}}, {{----------,
          4294967296  4294967296    2147483648  4294967296      4294967296 
     ------------------------------------------------------------------------
     4294967297    4801919417  9603838835             1           1         
     ----------}, {----------, ----------}}, {{- ----------, ----------}, {-
     4294967296    2147483648  4294967296        4294967296  4294967296     
     ------------------------------------------------------------------------
     9603838835    4801919417      4294967295  4294967297      9603838835   
     ----------, - ----------}}, {{----------, ----------}, {- ----------, -
     4294967296    2147483648      4294967296  4294967296      4294967296   
     ------------------------------------------------------------------------
     4801919417
     ----------}}}
     2147483648

o3 : List
i4 : rationalApproxSols = msolveRealSolutions(I, QQ)

          19207677669       19207677669         19207677669        
o4 = {{0, -----------}, {1, -----------}, {0, - -----------}, {1, -
           8589934592        8589934592          8589934592        
     ------------------------------------------------------------------------
     19207677669
     -----------}}
      8589934592

o4 : List
i5 : floatIntervalSols = msolveRealSolutions(I, RRi)

o5 = {{[-2.32831e-10,2.32831e-10], [2.23607,2.23607]}, {[1,1],
     ------------------------------------------------------------------------
     [2.23607,2.23607]}, {[-2.32831e-10,2.32831e-10], [-2.23607,-2.23607]},
     ------------------------------------------------------------------------
     {[1,1], [-2.23607,-2.23607]}}

o5 : List
i6 : floatIntervalSols = msolveRealSolutions(I, RRi_10)

o6 = {{[-.000976562,.000976562], [2.23535,2.23633]}, {[.999023,1.00098],
     ------------------------------------------------------------------------
     [2.23535,2.23633]}, {[-.000976562,.000976562], [-2.23633,-2.23535]},
     ------------------------------------------------------------------------
     {[.999023,1.00098], [-2.23633,-2.23535]}}

o6 : List
i7 : floatApproxSols = msolveRealSolutions(I, RR)

o7 = {{0, 2.23607}, {1, 2.23607}, {0, -2.23607}, {1, -2.23607}}

o7 : List
i8 : floatApproxSols = msolveRealSolutions(I, RR_10)

o8 = {{0, 2.23584}, {1, 2.23584}, {0, -2.23584}, {1, -2.23584}}

o8 : List

Note in cases where solutions have multiplicity this is not reflected in the output. While the solver does not return multiplicities, it reliably outputs the verified isolating intervals for multiple solutions.

i9 : I = ideal {(x-1)*x^3, (y^2-5)^2}

             4    3   4      2
o9 = ideal (x  - x , y  - 10y  + 25)

o9 : Ideal of R
i10 : floatApproxSols = msolveRealSolutions(I, RRi)

o10 = {{[-2.32831e-10,2.32831e-10], [2.23607,2.23607]}, {[1,1],
      -----------------------------------------------------------------------
      [2.23607,2.23607]}, {[-2.32831e-10,2.32831e-10], [-2.23607,-2.23607]},
      -----------------------------------------------------------------------
      {[1,1], [-2.23607,-2.23607]}}

o10 : List

Ways to use msolveRealSolutions:

For the programmer

The object msolveRealSolutions is a method function with options.