Macaulay2 » Documentation
Packages » Msolve :: msolveRealSolutions
next | previous | forward | backward | up | index | toc

msolveRealSolutions -- compute all real solutions to a zero dimensional system using symbolic methods

Description

This functions uses the msolve package to compute the real solutions to a zero dimensional polynomial ideal with either integer or rational coefficients.

The second input is optional, and indicates the alternative ways to provide output either using an exact rational interval QQi, a real interval RRi, or by taking a rational or real approximation of the midpoint of the intervals.

i1 : R = QQ[x,y]

o1 = R

o1 : PolynomialRing
i2 : I = ideal {(x-1)*x, y^2-5}

             2       2
o2 = ideal (x  - x, y  - 5)

o2 : Ideal of R
i3 : rationalIntervalSols = msolveRealSolutions I

                    4184140189545261631          
o3 = {{{- --------------------------------------,
          85070591730234615865843651857942052864 
     ------------------------------------------------------------------------
               2271906181767500277                20624086856177974297   
     ---------------------------------------}, {- --------------------, -
     170141183460469231731687303715884105728       9223372036854775808   
     ------------------------------------------------------------------------
     20624086856177974291      18446744073709551615  18446744073709551617  
     --------------------}}, {{--------------------, --------------------},
      9223372036854775808      18446744073709551616  18446744073709551616  
     ------------------------------------------------------------------------
        10312043428088987147    41248173712355948587       
     {- --------------------, - --------------------}}, {{-
         4611686018427387904    18446744073709551616       
     ------------------------------------------------------------------------
                   11740230715               
     ---------------------------------------,
     340282366920938463463374607431768211456 
     ------------------------------------------------------------------------
                   1030054639                  41248173712355948587 
     --------------------------------------}, {--------------------,
     21267647932558653966460912964485513216    18446744073709551616 
     ------------------------------------------------------------------------
     10312043428088987147      18446744073709551615  18446744073709551617  
     --------------------}}, {{--------------------, --------------------},
      4611686018427387904      18446744073709551616  18446744073709551616  
     ------------------------------------------------------------------------
      41248173712355948587  10312043428088987147
     {--------------------, --------------------}}}
      18446744073709551616   4611686018427387904

o3 : List
i4 : rationalApproxSols = msolveRealSolutions(I, QQ)

                   6096374197323022985              10312043428088987147  
o4 = {{- ---------------------------------------, - --------------------},
         340282366920938463463374607431768211456     4611686018427387904  
     ------------------------------------------------------------------------
           82496347424711897175                   4740643509               
     {1, - --------------------}, {---------------------------------------,
           36893488147419103232    680564733841876926926749214863536422912 
     ------------------------------------------------------------------------
     82496347424711897175       82496347424711897175
     --------------------}, {1, --------------------}}
     36893488147419103232       36893488147419103232

o4 : List
i5 : floatIntervalSols = msolveRealSolutions(I, RRi)

o5 = {{[-4.91843e-20,1.33531e-20], [-2.23607,-2.23607]}, {[1,1],
     ------------------------------------------------------------------------
     [-2.23607,-2.23607]}, {[-3.45014e-29,4.84329e-29], [2.23607,2.23607]},
     ------------------------------------------------------------------------
     {[1,1], [2.23607,2.23607]}}

o5 : List
i6 : floatIntervalSols = msolveRealSolutions(I, RRi_10)

o6 = {{[-5.85378e-8,1.02236e-8], [-2.23607,-2.23607]}, {[.999999,1],
     ------------------------------------------------------------------------
     [-2.23607,-2.23607]}, {[-1.23068e-7,2.68579e-7], [2.23607,2.23607]},
     ------------------------------------------------------------------------
     {[.999997,1], [2.23606,2.23607]}}

o6 : List
i7 : floatApproxSols = msolveRealSolutions(I, RR)

o7 = {{-1.79156e-20, -2.23607}, {1, -2.23607}, {6.96575e-30, 2.23607}, {1,
     ------------------------------------------------------------------------
     2.23607}}

o7 : List
i8 : floatApproxSols = msolveRealSolutions(I, RR_10)

o8 = {{-2.41571e-8, -2.23607}, {1, -2.23607}, {7.27555e-8, 2.23607}, {1,
     ------------------------------------------------------------------------
     2.23607}}

o8 : List

Note in cases where solutions have multiplicity this is not reflected in the output. While the solver does not return multiplicities, it reliably outputs the verified isolating intervals for multiple solutions.

i9 : I = ideal {(x-1)*x^3, (y^2-5)^2}

             4    3   4      2
o9 = ideal (x  - x , y  - 10y  + 25)

o9 : Ideal of R
i10 : floatApproxSols = msolveRealSolutions(I, RRi)

o10 = {{[-4.91843e-20,1.33531e-20], [-2.23607,-2.23607]}, {[1,1],
      -----------------------------------------------------------------------
      [-2.23607,-2.23607]}, {[-3.45014e-29,4.84329e-29], [2.23607,2.23607]},
      -----------------------------------------------------------------------
      {[1,1], [2.23607,2.23607]}}

o10 : List

Ways to use msolveRealSolutions:

  • msolveRealSolutions(Ideal)
  • msolveRealSolutions(Ideal,Ring)
  • msolveRealSolutions(Ideal,RingFamily)

For the programmer

The object msolveRealSolutions is a method function with options.


The source of this document is in Msolve.m2:644:0.