Macaulay2 » Documentation
Packages » MultigradedImplicitization :: componentsOfKernel
next | previous | forward | backward | up | index | toc

componentsOfKernel -- Finds all minimal generators up to a given total degree in the kernel of a ring map

Synopsis

Description

Computes all minimal generators of $\ker(F)$ which are of total degree at most d.

i1 : A = matrix {{1,1,1,0,0,0}, {0,0,0,1,1,1}, {1,0,0,1,0,0}, {0,1,0,0,1,0}, {0,0,1,0,0,1}}

o1 = | 1 1 1 0 0 0 |
     | 0 0 0 1 1 1 |
     | 1 0 0 1 0 0 |
     | 0 1 0 0 1 0 |
     | 0 0 1 0 0 1 |

              5       6
o1 : Matrix ZZ  <-- ZZ
i2 : R = QQ[x_(1,1)..x_(2,3)];
i3 : S = QQ[t_1..t_2, s_1..s_3];
i4 : F = map(S, R, {t_1*s_1, t_1*s_2, t_1*s_3, t_2*s_1, t_2*s_2, t_2*s_3})

o4 = map (S, R, {t s , t s , t s , t s , t s , t s })
                  1 1   1 2   1 3   2 1   2 2   2 3

o4 : RingMap S <-- R
i5 : peek componentsOfKernel(2, F)

o5 = MutableHashTable{{0, 1, 0, 0, 1} => {}                   }
                      {0, 1, 0, 1, 0} => {}
                      {0, 1, 1, 0, 0} => {}
                      {0, 2, 0, 0, 2} => {}
                      {0, 2, 0, 1, 1} => {}
                      {0, 2, 0, 2, 0} => {}
                      {0, 2, 1, 0, 1} => {}
                      {0, 2, 1, 1, 0} => {}
                      {0, 2, 2, 0, 0} => {}
                      {1, 0, 0, 0, 1} => {}
                      {1, 0, 0, 1, 0} => {}
                      {1, 0, 1, 0, 0} => {}
                      {1, 1, 0, 0, 2} => {}
                      {1, 1, 0, 1, 1} => {x   x    - x   x   }
                                           1,3 2,2    1,2 2,3
                      {1, 1, 0, 2, 0} => {}
                      {1, 1, 1, 0, 1} => {x   x    - x   x   }
                                           1,3 2,1    1,1 2,3
                      {1, 1, 1, 1, 0} => {x   x    - x   x   }
                                           1,2 2,1    1,1 2,2
                      {1, 1, 2, 0, 0} => {}
                      {2, 0, 0, 0, 2} => {}
                      {2, 0, 0, 1, 1} => {}
                      {2, 0, 0, 2, 0} => {}
                      {2, 0, 1, 0, 1} => {}
                      {2, 0, 1, 1, 0} => {}
                      {2, 0, 2, 0, 0} => {}

If a grading in which $\ker(F)$ is homogeneous is already known or a specific grading is desired then the option Grading can be used to specify this. In this case the columns of the matrix Grading are automatically used to grade the source of $F$.

Ways to use componentsOfKernel:

For the programmer

The object componentsOfKernel is a method function with options.