Macaulay2 » Documentation
Packages » MultiprojectiveVarieties :: multidegree(ZZ,MultirationalMap)
next | previous | forward | backward | up | index | toc

multidegree(ZZ,MultirationalMap) -- i-th projective degree of a multi-rational map using a probabilistic approach

Synopsis

Description

This is calculated by means of the inverse image of an appropriate random subvariety of the target.

i1 : Phi = last graph rationalMap PP_(ZZ/300007)^(1,4);

o1 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^5 to PP^5)
i2 : for i in {4,3,2,1,0} list time multidegree(i,Phi)
 -- used 0.00100018s (cpu); 0.00100793s (thread); 0s (gc)
 -- used 0.135144s (cpu); 0.0946484s (thread); 0s (gc)
 -- used 0.153576s (cpu); 0.113898s (thread); 0s (gc)
 -- used 0.139907s (cpu); 0.10014s (thread); 0s (gc)
 -- used 0.122257s (cpu); 0.0837843s (thread); 0s (gc)

o2 = {51, 28, 14, 6, 2}

o2 : List
i3 : time assert(oo == multidegree Phi)
 -- used 0.0402254s (cpu); 0.0402219s (thread); 0s (gc)

References

ArXiv preprint: Computations with rational maps between multi-projective varieties.

See also

Ways to use this method: