Macaulay2 » Documentation
Packages » MultiprojectiveVarieties :: projectiveVariety(...,MinimalGenerators=>...)
next | previous | forward | backward | up | index | toc

projectiveVariety(...,MinimalGenerators=>...) -- whether to trim the ideal (intended for internal use only)

Description

Use this option only in the case you know that the ideal I is already trimmed.

See also

Functions with optional argument named MinimalGenerators:

  • canonicalBundle(...,MinimalGenerators=>...) -- see canonicalBundle -- the canonical bundle of a projective variety
  • compose(Module,Module,Module,MinimalGenerators=>...) -- see compose -- composition as a pairing on Hom-modules
  • cotangentSheaf(...,MinimalGenerators=>...) -- see cotangentSheaf -- cotangent sheaf of a projective variety
  • decompose(Ideal,MinimalGenerators=>...) (missing documentation)
  • dual(SheafMap,MinimalGenerators=>...) (missing documentation)
  • End(...,MinimalGenerators=>...) -- see End -- module of endomorphisms
  • Hom(...,MinimalGenerators=>...) -- see Hom -- module of homomorphisms
  • homomorphism'(...,MinimalGenerators=>...) -- see homomorphism' -- get the element of Hom from a homomorphism
  • idealSheaf(...,MinimalGenerators=>...) (missing documentation)
  • intersect(Ideal,Ideal,MinimalGenerators=>...) -- see intersect(Ideal,Ideal) -- compute an intersection of a sequence of ideals or modules
  • intersect(Module,Module,MinimalGenerators=>...) -- see intersect(Ideal,Ideal) -- compute an intersection of a sequence of ideals or modules
  • projectiveVariety(...,MinimalGenerators=>...) -- whether to trim the ideal (intended for internal use only)
  • quotient'(...,MinimalGenerators=>...) (missing documentation)
  • quotient(...,MinimalGenerators=>...) -- see quotient(Module,Module) -- ideal or submodule quotient
  • saturate(...,MinimalGenerators=>...) -- see saturate -- saturation of ideal or submodule
  • sheafExt(ZZ,CoherentSheaf,CoherentSheaf,MinimalGenerators=>...) (missing documentation)
  • sheafExt(ZZ,CoherentSheaf,SheafOfRings,MinimalGenerators=>...) (missing documentation)
  • sheafExt(ZZ,SheafOfRings,CoherentSheaf,MinimalGenerators=>...) (missing documentation)
  • sheafExt(ZZ,SheafOfRings,SheafOfRings,MinimalGenerators=>...) (missing documentation)
  • sheafHom(...,MinimalGenerators=>...) -- see sheafHom -- sheaf Hom
  • tangentSheaf(...,MinimalGenerators=>...) -- see tangentSheaf -- tangent sheaf of a projective variety
  • truncate(List,Matrix,MinimalGenerators=>...) -- see truncate(List,Matrix) -- truncation of a map of free modules
  • truncate(ZZ,Matrix,MinimalGenerators=>...) -- see truncate(List,Matrix) -- truncation of a map of free modules
  • truncate(List,Ideal,MinimalGenerators=>...) -- see truncate(List,Module) -- truncation of the graded ring, ideal or module at a specified degree or set of degrees
  • truncate(List,Module,MinimalGenerators=>...) -- see truncate(List,Module) -- truncation of the graded ring, ideal or module at a specified degree or set of degrees
  • truncate(List,Ring,MinimalGenerators=>...) -- see truncate(List,Module) -- truncation of the graded ring, ideal or module at a specified degree or set of degrees
  • truncate(ZZ,Ideal,MinimalGenerators=>...) -- see truncate(List,Module) -- truncation of the graded ring, ideal or module at a specified degree or set of degrees
  • truncate(ZZ,Module,MinimalGenerators=>...) -- see truncate(List,Module) -- truncation of the graded ring, ideal or module at a specified degree or set of degrees
  • truncate(ZZ,Ring,MinimalGenerators=>...) -- see truncate(List,Module) -- truncation of the graded ring, ideal or module at a specified degree or set of degrees

Further information

  • Default value: true
  • Function: projectiveVariety -- the closed multi-projective subvariety defined by a multi-homogeneous ideal
  • Option key: MinimalGenerators -- whether to compute minimal generators and return a trimmed set of generators

The source of this document is in MultiprojectiveVarieties.m2:2487:0.