MinimalGenerators => ..., default value true, whether to trim the ideal (intended for internal use only)
Saturate => ..., default value true, whether to compute the multi-saturation of the ideal (intended for internal use only)
Outputs:
a multi-projective variety, the Segre-Veronese variety $\nu_{d_1}(\mathbb{P}^{n_1})\times\nu_{d_2}(\mathbb{P}^{n_2})\times\cdots\times\nu_{d_r}(\mathbb{P}^{n_r})$ over $K$
Description
i1 : X = projectiveVariety({2,1,3},{3,4,2},ZZ/33331);
o1 : ProjectiveVariety, 6-dimensional subvariety of PP^9 x PP^4 x PP^9
i2 : X = PP_(ZZ/33331)^({2,1,3},{3,4,2});
o2 : ProjectiveVariety, 6-dimensional subvariety of PP^9 x PP^4 x PP^9
i3 : parametrize X;
o3 : MultirationalMap (rational map from PP^6 to X)