Macaulay2 » Documentation
Packages » NoetherNormalization :: noetherNormalization
next | previous | forward | backward | up | index | toc

noetherNormalization -- data for Noether normalization

Description

The computations performed in the routine noetherNormalization use a random linear change of coordinates, hence one should expect the output to change each time the routine is executed.
i1 : R = QQ[x_1..x_4];
i2 : I = ideal(x_2^2+x_1*x_2+1, x_1*x_2*x_3*x_4+1);

o2 : Ideal of R
i3 : (f,J,X) = noetherNormalization I

                  3     9             7     9                      7 2  
o3 = (map (R, R, {-x  + -x  + x , x , -x  + -x  + x , x }), ideal (-x  +
                  4 1   2 2    4   1  4 1   4 2    3   2           4 1  
     ------------------------------------------------------------------------
     9                 21 3     153 2 2   81   3   3 2       9   2    
     -x x  + x x  + 1, --x x  + ---x x  + --x x  + -x x x  + -x x x  +
     2 1 2    1 4      16 1 2    16 1 2    8 1 2   4 1 2 3   2 1 2 3  
     ------------------------------------------------------------------------
     7 2       9   2
     -x x x  + -x x x  + x x x x  + 1), {x , x })
     4 1 2 4   4 1 2 4    1 2 3 4         4   3

o3 : Sequence
The next example shows how when we use the lexicographical ordering, we can see the integrality of R/ f I over the polynomial ring in dim(R/I) variables:
i4 : R = QQ[x_1..x_5, MonomialOrder => Lex];
i5 : I = ideal(x_2*x_1-x_5^3, x_5*x_1^3);

o5 : Ideal of R
i6 : (f,J,X) = noetherNormalization I

                  7     7                    7         3      7              
o6 = (map (R, R, {-x  + -x  + x , x , 7x  + --x  + x , -x  + --x  + x , x }),
                  3 1   9 2    5   1    1   10 2    4  7 1   10 2    3   2   
     ------------------------------------------------------------------------
            7 2   7               3  343 3     343 2 2   49 2       343   3  
     ideal (-x  + -x x  + x x  - x , ---x x  + ---x x  + --x x x  + ---x x  +
            3 1   9 1 2    1 5    2   27 1 2    27 1 2    3 1 2 5    81 1 2  
     ------------------------------------------------------------------------
     98   2           2   343 4   49 3     7 2 2      3
     --x x x  + 7x x x  + ---x  + --x x  + -x x  + x x ), {x , x , x })
      9 1 2 5     1 2 5   729 2   27 2 5   3 2 5    2 5     5   4   3

o6 : Sequence
i7 : transpose gens gb J

o7 = {-10} | x_2^10                                                         
     {-10} | 413343x_1x_2x_5^6-3500658x_2^9x_5-117649x_2^9+2250423x_2^8x_5^2
     {-9}  | 7203x_1x_2^2x_5^3-137781x_1x_2x_5^5+9261x_1x_2x_5^4+1166886x_2^
     {-9}  | 121060821x_1x_2^3+2315685267x_1x_2^2x_5^2+311299254x_1x_2^2x_5+
     {-3}  | 21x_1^2+7x_1x_2+9x_1x_5-9x_2^3                                 
     ------------------------------------------------------------------------
                                                                        
     +151263x_2^8x_5-964467x_2^7x_5^3-194481x_2^7x_5^2+250047x_2^6x_5^3-
     9-750141x_2^8x_5-16807x_2^8+321489x_2^7x_5^2+43218x_2^7x_5-83349x_2
     439334834526x_1x_2x_5^5-14765025303x_1x_2x_5^4+1984873086x_1x_2x_5^
                                                                        
     ------------------------------------------------------------------------
                                                                     
     321489x_2^5x_5^4+413343x_2^4x_5^5+137781x_2^2x_5^6+177147x_2x_5^
     ^6x_5^2+107163x_2^5x_5^3-137781x_2^4x_5^4+9261x_2^4x_5^3+2401x_2
     3+200120949x_1x_2x_5^2-3720786376356x_2^9+2391934099086x_2^8x_5+
                                                                     
     ------------------------------------------------------------------------
                                                                   
     7                                                             
     ^3x_5^3-45927x_2^2x_5^5+6174x_2^2x_5^4-59049x_2x_5^6+3969x_2x_
     80387359983x_2^8-1025114613894x_2^7x_5^2-172258628535x_2^7x_5+
                                                                   
     ------------------------------------------------------------------------
                                                                             
                                                                             
     5^5                                                                     
     2315685267x_2^7+265770455454x_2^6x_5^2-8931928887x_2^6x_5-600362847x_2^6
                                                                             
     ------------------------------------------------------------------------
                                                                     
                                                                     
                                                                     
     -341704871298x_2^5x_5^3+11483908569x_2^5x_5^2+771895089x_2^5x_5+
                                                                     
     ------------------------------------------------------------------------
                                                                             
                                                                             
                                                                             
     155649627x_2^5+439334834526x_2^4x_5^4-14765025303x_2^4x_5^3+1984873086x_
                                                                             
     ------------------------------------------------------------------------
                                                                             
                                                                             
                                                                             
     2^4x_5^2+200120949x_2^4x_5+40353607x_2^4+771895089x_2^3x_5^2+155649627x_
                                                                             
     ------------------------------------------------------------------------
                                                                             
                                                                             
                                                                             
     2^3x_5+146444944842x_2^2x_5^5-4921675101x_2^2x_5^4+1654060905x_2^2x_5^3+
                                                                             
     ------------------------------------------------------------------------
                                                                            
                                                                            
                                                                            
     200120949x_2^2x_5^2+188286357654x_2x_5^6-6327867987x_2x_5^5+850659894x_
                                                                            
     ------------------------------------------------------------------------
                             |
                             |
                             |
     2x_5^4+85766121x_2x_5^3 |
                             |

             5      1
o7 : Matrix R  <-- R
If noetherNormalization is unable to place the ideal into the desired position after a few tries, the following warning is given:
i8 : R = ZZ/2[a,b];
i9 : I = ideal(a^2*b+a*b^2+1);

o9 : Ideal of R
i10 : (f,J,X) = noetherNormalization I
--warning: no good linear transformation found by noetherNormalization

                                  2       2
o10 = (map (R, R, {b, a}), ideal(a b + a*b  + 1), {b})

o10 : Sequence
Here is an example with the option Verbose => true:
i11 : R = QQ[x_1..x_4];
i12 : I = ideal(x_2^2+x_1*x_2+1, x_1*x_2*x_3*x_4+1);

o12 : Ideal of R
i13 : (f,J,X) = noetherNormalization(I,Verbose => true)
--trying random transformation: 1
--trying with basis element limit: 5
--trying with basis element limit: 20

                   1     7              9     5                      6 2  
o13 = (map (R, R, {-x  + -x  + x , x , --x  + -x  + x , x }), ideal (-x  +
                   5 1   4 2    4   1  10 1   6 2    3   2           5 1  
      -----------------------------------------------------------------------
      7                  9 3     209 2 2   35   3   1 2       7   2    
      -x x  + x x  + 1, --x x  + ---x x  + --x x  + -x x x  + -x x x  +
      4 1 2    1 4      50 1 2   120 1 2   24 1 2   5 1 2 3   4 1 2 3  
      -----------------------------------------------------------------------
       9 2       5   2
      --x x x  + -x x x  + x x x x  + 1), {x , x })
      10 1 2 4   6 1 2 4    1 2 3 4         4   3

o13 : Sequence
The first number in the output above gives the number of linear transformations performed by the routine while attempting to place I into the desired position. The second number tells which BasisElementLimit was used when computing the (partial) Groebner basis. By default, noetherNormalization tries to use a partial Groebner basis. It does this by sequentially computing a Groebner basis with the option BasisElementLimit set to predetermined values. The default values come from the following list:{5,20,40,60,80,infinity}. To set the values manually, use the option LimitList:
i14 : R = QQ[x_1..x_4]; 
i15 : I = ideal(x_2^2+x_1*x_2+1, x_1*x_2*x_3*x_4+1);

o15 : Ideal of R
i16 : (f,J,X) = noetherNormalization(I,Verbose => true,LimitList => {5,10})
--trying random transformation: 1
--trying with basis element limit: 5
--trying with basis element limit: 10

                   7     2             7     10                      10 2  
o16 = (map (R, R, {-x  + -x  + x , x , -x  + --x  + x , x }), ideal (--x  +
                   3 1   3 2    4   1  5 1    7 2    3   2            3 1  
      -----------------------------------------------------------------------
      2                 49 3     64 2 2   20   3   7 2       2   2    
      -x x  + x x  + 1, --x x  + --x x  + --x x  + -x x x  + -x x x  +
      3 1 2    1 4      15 1 2   15 1 2   21 1 2   3 1 2 3   3 1 2 3  
      -----------------------------------------------------------------------
      7 2       10   2
      -x x x  + --x x x  + x x x x  + 1), {x , x })
      5 1 2 4    7 1 2 4    1 2 3 4         4   3

o16 : Sequence
To limit the randomness of the coefficients, use the option RandomRange. Here is an example where the coefficients of the linear transformation are random integers from -2 to 2:
i17 : R = QQ[x_1..x_4];
i18 : I = ideal(x_2^2+x_1*x_2+1, x_1*x_2*x_3*x_4+1);

o18 : Ideal of R
i19 : (f,J,X) = noetherNormalization(I,Verbose => true,RandomRange => 2)
--trying random transformation: 1
--trying with basis element limit: 5
--trying with basis element limit: 20

                                                                       2  
o19 = (map (R, R, {- 2x  - 2x  + x , x , x  - x  + x , x }), ideal (- x  -
                       1     2    4   1   1    2    3   2              1  
      -----------------------------------------------------------------------
                            3         3     2           2      2          2
      2x x  + x x  + 1, - 2x x  + 2x x  - 2x x x  - 2x x x  + x x x  - x x x 
        1 2    1 4          1 2     1 2     1 2 3     1 2 3    1 2 4    1 2 4
      -----------------------------------------------------------------------
      + x x x x  + 1), {x , x })
         1 2 3 4         4   3

o19 : Sequence

This symbol is provided by the package NoetherNormalization.

Ways to use noetherNormalization:

  • noetherNormalization(Ideal)
  • noetherNormalization(PolynomialRing)
  • noetherNormalization(QuotientRing)

For the programmer

The object noetherNormalization is a method function with options.


The source of this document is in NoetherNormalization.m2:313:0.