Macaulay2 » Documentation
Packages » Macaulay2Doc » The Macaulay2 language » Type » Ring » EngineRing » QuotientRing
next | previous | forward | backward | up | index | toc

QuotientRing -- the class of all quotient rings

Menu

Functions and methods returning a quotient ring:

Methods that use a quotient ring:

  • ambient(QuotientRing) -- see ambient(Ring) -- ambient polynomial ring
  • codim(QuotientRing) -- compute the codimension
  • degreeGroup(QuotientRing) -- see degreeGroup -- the degree group of a ring or monoid
  • degrees(QuotientRing) -- see degrees(Ring) -- degrees of generators
  • describe(QuotientRing) -- see describe -- real description
  • dim(QuotientRing) -- see dim(Ring) -- compute the Krull dimension
  • flattenRing(QuotientRing) -- see flattenRing -- write a ring as a (quotient of a) polynomial ring
  • heft(QuotientRing) -- see heft -- heft vector of ring or monoid
  • hilbertSeries(QuotientRing) -- see hilbertSeries(PolynomialRing) -- compute the Hilbert series of a ring
  • ideal(QuotientRing) -- see ideal(Ring) -- get the defining ideal
  • isAffineRing(QuotientRing) -- see isAffineRing -- whether something is an affine ring
  • isHomogeneous(QuotientRing) -- see isHomogeneous -- whether something is homogeneous (graded)
  • isQuotientOf(Ring,QuotientRing) -- see isQuotientOf(Ring,Ring) -- whether one ring is a quotient of another
  • isQuotientOf(Type,QuotientRing) -- see isQuotientOf(Type,Ring) -- whether one ring is a quotient of a ring of a given type
  • isQuotientRing(QuotientRing) -- see isQuotientRing -- whether something is a quotient ring
  • isSkewCommutative(QuotientRing) -- see isSkewCommutative -- whether a ring has skew commuting variables
  • newRing(QuotientRing) -- see newRing -- make a copy of a ring, with some features changed
  • numgens(QuotientRing) -- see numgens(Ring) -- number of generators of a polynomial ring
  • options(QuotientRing) -- see options(Monoid) -- get values used for optional arguments
  • precision(QuotientRing) -- see precision
  • presentation(PolynomialRing,QuotientRing) -- presentation of a quotient ring
  • presentation(QuotientRing) -- see presentation(PolynomialRing,QuotientRing) -- presentation of a quotient ring
  • trim(QuotientRing) -- see trim -- minimize generators and relations
  • isWeylAlgebra(QuotientRing) -- see Weyl algebras

For the programmer

The object QuotientRing is a type, with ancestor classes EngineRing < Ring < Type < MutableHashTable < HashTable < Thing.


The source of this document is in Macaulay2Doc/doc_rings.m2:194:0.