next | previous | forward | backward | up | index | toc

# newRing -- make a copy of a ring, with some features changed

## Description

If a different number of variables is given with Variables, then the list of degrees in R will be ignored. If a new degree rank is specified with DegreeRank then the list of degrees and the heft vector of R will be ignored. If a new nonempty list of degrees is specified with Degrees, then the degree rank and the heft vector of R will be ignored.

 i1 : R = QQ[x,y, MonomialOrder => Lex, Degrees => {3,5}]; i2 : describe newRing(R, MonomialOrder => GRevLex) o2 = QQ[x..y, Degrees => {3, 5}, Heft => {1}, MonomialOrder => {MonomialSize => 32}] {GRevLex => {3, 5} } {Position => Up } i3 : describe newRing(R, Variables => 4) o3 = QQ[p ..p , Degrees => {4:1}, Heft => {1}, MonomialOrder => {MonomialSize => 32}] 0 3 {Lex => 2 } {Position => Up } {GRevLex => {2:1} } i4 : describe newRing(R, Heft => {2}) o4 = QQ[x..y, Degrees => {3, 5}, Heft => {2}, MonomialOrder => {MonomialSize => 32}] {Lex => 2 } {Position => Up } i5 : S = R/(x^2+y^3); i6 : describe newRing(R, Variables => 2) o6 = QQ[p ..p , Degrees => {3, 5}, Heft => {1}, MonomialOrder => {MonomialSize => 32}] 0 1 {Lex => 2 } {Position => Up }

The default values for the options of newRing are all set to a non-accessible private symbol whose name is nothing.

## Ways to use newRing :

• newRing(PolynomialRing)
• newRing(QuotientRing)

## For the programmer

The object newRing is .