Macaulay2
»
Documentation
Packages
»
NormalToricVarieties
::
Index
next | previous | forward | backward | up |
index
|
toc
NormalToricVarieties : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
- ToricDivisor
-- perform arithmetic on toric divisors
abstractSheaf(NormalToricVariety,AbstractVariety,CoherentSheaf)
-- make the corresponding abstract sheaf
abstractSheaf(NormalToricVariety,AbstractVariety,ToricDivisor)
-- make the corresponding abstract sheaf
abstractSheaf(NormalToricVariety,CoherentSheaf)
-- make the corresponding abstract sheaf
abstractSheaf(NormalToricVariety,ToricDivisor)
-- make the corresponding abstract sheaf
abstractVariety(NormalToricVariety)
-- make the corresponding abstract variety
abstractVariety(NormalToricVariety,AbstractVariety)
-- make the corresponding abstract variety
affineSpace
-- make an affine space as a normal toric variety
affineSpace(...,CoefficientRing=>...)
-- make an affine space as a normal toric variety
affineSpace(...,Variable=>...)
-- make an affine space as a normal toric variety
affineSpace(ZZ)
-- make an affine space as a normal toric variety
cartesianProduct
-- make the Cartesian product of normal toric varieties
cartesianProduct(NormalToricVariety)
-- make the Cartesian product of normal toric varieties
cartesianProduct(Sequence)
-- make the Cartesian product of normal toric varieties
cartierDivisorGroup
-- compute the group of torus-invariant Cartier divisors
cartierDivisorGroup(NormalToricVariety)
-- compute the group of torus-invariant Cartier divisors
cartierDivisorGroup(ToricMap)
-- make the induced map between groups of Cartier divisors.
ch(CoherentSheaf)
-- compute the Chern character of a coherent sheaf
ch(ZZ,CoherentSheaf)
-- compute the Chern character of a coherent sheaf
chern(CoherentSheaf)
-- compute the Chern class of a coherent sheaf
chern(ZZ,CoherentSheaf)
-- compute the Chern class of a coherent sheaf
chi(CoherentSheaf)
-- compute the Euler characteristic of a coherent sheaf
Chow ring
-- make the rational Chow ring
classGroup
-- make the class group
classGroup(NormalToricVariety)
-- make the class group
classGroup(ToricMap)
-- make the induced map between class groups
components(NormalToricVariety)
-- list the factors in a product
cotangentSheaf(List,NormalToricVariety)
-- make the sheaf of Zariski 1-forms
cotangentSheaf(NormalToricVariety)
-- make the sheaf of Zariski 1-forms
cotangentSheaf(ZZ,NormalToricVariety)
-- make the sheaf of Zariski 1-forms
Cox ring
-- make the total coordinate ring (a.k.a. Cox ring)
ctop(CoherentSheaf)
-- compute the top Chern class of a coherent sheaf
degree(ToricDivisor)
-- make the degree of the associated rank-one reflexive sheaf
diagonalToricMap
-- make a diagonal map into a Cartesian product
diagonalToricMap(NormalToricVariety)
-- make a diagonal map into a Cartesian product
diagonalToricMap(NormalToricVariety,ZZ)
-- make a diagonal map into a Cartesian product
diagonalToricMap(NormalToricVariety,ZZ,Array)
-- make a diagonal map into a Cartesian product
dim(NormalToricVariety)
-- get the dimension of a normal toric variety
divisor arithmetic
-- perform arithmetic on toric divisors
entries(ToricDivisor)
-- get the list of coefficients
expression(NormalToricVariety)
-- get the expression used to format for printing
expression(ToricDivisor)
-- get the expression used to format for printing
fan(NormalToricVariety)
-- make the 'Polyhedra' fan associated to the normal toric variety
finding attributes and properties
-- information about accessing features of a normal toric variety
fromCDivToPic
-- get the map from Cartier divisors to the Picard group
fromCDivToPic(NormalToricVariety)
-- get the map from Cartier divisors to the Picard group
fromCDivToWDiv
-- get the map from Cartier divisors to Weil divisors
fromCDivToWDiv(NormalToricVariety)
-- get the map from Cartier divisors to Weil divisors
fromPicToCl
-- get the map from Picard group to class group
fromPicToCl(NormalToricVariety)
-- get the map from Picard group to class group
fromWDivToCl
-- get the map from the group of Weil divisors to the class group
fromWDivToCl(NormalToricVariety)
-- get the map from the group of Weil divisors to the class group
HH^ZZ(NormalToricVariety,CoherentSheaf)
-- compute the cohomology of a coherent sheaf
HH^ZZ(NormalToricVariety,SheafOfRings)
-- compute the cohomology of a coherent sheaf
hilbertPolynomial(NormalToricVariety)
-- compute the multivariate Hilbert polynomial
hilbertPolynomial(NormalToricVariety,CoherentSheaf)
-- compute the multivariate Hilbert polynomial
hilbertPolynomial(NormalToricVariety,Ideal)
-- compute the multivariate Hilbert polynomial
hilbertPolynomial(NormalToricVariety,Module)
-- compute the multivariate Hilbert polynomial
hilbertPolynomial(NormalToricVariety,Ring)
-- compute the multivariate Hilbert polynomial
hilbertPolynomial(NormalToricVariety,SheafOfRings)
-- compute the multivariate Hilbert polynomial
hirzebruchSurface
-- make any Hirzebruch surface
hirzebruchSurface(...,CoefficientRing=>...)
-- make any Hirzebruch surface
hirzebruchSurface(...,Variable=>...)
-- make any Hirzebruch surface
hirzebruchSurface(ZZ)
-- make any Hirzebruch surface
id _ NormalToricVariety
-- make the identity map from a NormalToricVariety to itself
ideal(NormalToricVariety)
-- make the irrelevant ideal
ideal(ToricMap)
-- make the ideal defining the closure of the image
inducedMap(ToricMap)
-- make the induced map between total coordinate rings (a.k.a. Cox rings)
intersectionRing(NormalToricVariety)
-- make the rational Chow ring
intersectionRing(NormalToricVariety,AbstractVariety)
-- make the rational Chow ring
isAmple
-- whether a torus-invariant Weil divisor is ample
isAmple(ToricDivisor)
-- whether a torus-invariant Weil divisor is ample
isCartier
-- whether a torus-invariant Weil divisor is Cartier
isCartier(ToricDivisor)
-- whether a torus-invariant Weil divisor is Cartier
isComplete(NormalToricVariety)
-- whether a toric variety is complete
isDegenerate
-- whether a toric variety is degenerate
isDegenerate(NormalToricVariety)
-- whether a toric variety is degenerate
isDominant
-- whether a toric map is dominant
isDominant(ToricMap)
-- whether a toric map is dominant
isEffective
-- whether a torus-invariant Weil divisor is effective
isEffective(ToricDivisor)
-- whether a torus-invariant Weil divisor is effective
isFano
-- whether a normal toric variety is Fano
isFano(NormalToricVariety)
-- whether a normal toric variety is Fano
isFibration
-- whether a toric map is a fibration
isFibration(ToricMap)
-- whether a toric map is a fibration
isNef
-- whether a torus-invariant Weil divisor is nef
isNef(ToricDivisor)
-- whether a torus-invariant Weil divisor is nef
isProjective
-- whether a toric variety is projective
isProjective(NormalToricVariety)
-- whether a toric variety is projective
isProper
-- whether a toric map is proper
isProper(ToricMap)
-- whether a toric map is proper
isQQCartier
-- whether a torus-invariant Weil divisor is QQ-Cartier
isQQCartier(ToricDivisor)
-- whether a torus-invariant Weil divisor is QQ-Cartier
isSimplicial(NormalToricVariety)
-- whether a normal toric variety is simplicial
isSmooth(NormalToricVariety)
-- whether a normal toric variety is smooth
isSurjective(ToricMap)
-- whether a toric map is surjective
isVeryAmple(ToricDivisor)
-- whether a torus-invariant Weil divisor is very ample
isWellDefined(NormalToricVariety)
-- whether a toric variety is well-defined
isWellDefined(ToricDivisor)
-- whether a toric divisor is well-defined
isWellDefined(ToricMap)
-- whether a toric map is well defined
kleinschmidt
-- make any smooth normal toric variety having Picard rank two
kleinschmidt(...,CoefficientRing=>...)
-- make any smooth normal toric variety having Picard rank two
kleinschmidt(...,Variable=>...)
-- make any smooth normal toric variety having Picard rank two
kleinschmidt(ZZ,List)
-- make any smooth normal toric variety having Picard rank two
latticePoints(ToricDivisor)
-- compute the lattice points in the associated polytope
makeSimplicial
-- make a birational simplicial toric variety
makeSimplicial(...,Strategy=>...)
-- make a birational simplicial toric variety
makeSimplicial(NormalToricVariety)
-- make a birational simplicial toric variety
makeSmooth
-- make a birational smooth toric variety
makeSmooth(...,Strategy=>...)
-- make a birational smooth toric variety
makeSmooth(NormalToricVariety)
-- make a birational smooth toric variety
making normal toric varieties
-- information about the basic constructors
map(NormalToricVariety,NormalToricVariety,Matrix)
-- make a torus-equivariant map between normal toric varieties
map(NormalToricVariety,NormalToricVariety,ZZ)
-- make a torus-equivariant map between normal toric varieties
matrix(ToricMap)
-- get the underlying map of lattices
max(NormalToricVariety)
-- get the maximal cones in the associated fan
monomialIdeal(NormalToricVariety)
-- make the irrelevant ideal
monomials(ToricDivisor)
-- list the monomials that span the linear series
nefGenerators
-- compute generators of the nef cone
nefGenerators(NormalToricVariety)
-- compute generators of the nef cone
NormalToricVarieties
-- working with normal toric varieties and related objects
NormalToricVariety
-- the class of all normal toric varieties
normalToricVariety
-- make a normal toric variety
NormalToricVariety ** NormalToricVariety
-- make the Cartesian product of two normal toric varieties
NormalToricVariety ^ Array
-- make a canonical projection map
NormalToricVariety ^** ZZ
-- make the Cartesian power of a normal toric variety
NormalToricVariety _ Array
-- make a canonical inclusion into a product
NormalToricVariety _ ZZ
-- make an irreducible torus-invariant divisor
normalToricVariety(...,CoefficientRing=>...)
-- make a normal toric variety
normalToricVariety(...,MinimalGenerators=>...)
-- make a normal toric variety from a polytope
normalToricVariety(...,Variable=>...)
-- make a normal toric variety
normalToricVariety(...,WeilToClass=>...)
-- make a normal toric variety
normalToricVariety(Fan)
-- make a normal toric variety from a 'Polyhedra' fan
normalToricVariety(List,List)
-- make a normal toric variety
normalToricVariety(Matrix)
-- make a normal toric variety from a polytope
normalToricVariety(Polyhedron)
-- make a normal toric variety from a 'Polyhedra' polyhedron
normalToricVariety(Ring)
-- get the associated normal toric variety
normalToricVariety(ToricDivisor)
-- get the underlying normal toric variety
OO _ NormalToricVariety
-- make a coherent sheaf of rings
OO ToricDivisor
-- make the associated rank-one reflexive sheaf
orbits
-- make a hashtable indexing the torus orbits (a.k.a. cones in the fan)
orbits(NormalToricVariety)
-- make a hashtable indexing the torus orbits (a.k.a. cones in the fan)
orbits(NormalToricVariety,ZZ)
-- get a list of the torus orbits (a.k.a. cones in the fan) of a given dimension
picardGroup
-- make the Picard group
picardGroup(NormalToricVariety)
-- make the Picard group
picardGroup(ToricMap)
-- make the induced map between Picard groups
polytope(ToricDivisor)
-- makes the associated 'Polyhedra' polyhedron
projective space
-- information about various constructions of projective space
pullback
-- make the pullback along a toric map
pullback(ToricMap,CoherentSheaf)
-- make the pullback of a coherent sheaf under a toric map
pullback(ToricMap,Module)
-- make the pullback of a coherent sheaf under a toric map
pullback(ToricMap,ToricDivisor)
-- make the pullback of a Cartier divisor under a toric map
rays(NormalToricVariety)
-- get the rays of the associated fan
resolving singularities
-- information about find a smooth proper birational surjection
ring(NormalToricVariety)
-- make the total coordinate ring (a.k.a. Cox ring)
sheaf(NormalToricVariety)
-- make a coherent sheaf of rings
sheaf(NormalToricVariety,Module)
-- make a coherent sheaf
sheaf(NormalToricVariety,Ring)
-- make a coherent sheaf of rings
smallAmpleToricDivisor
-- get a very ample toric divisor from the database
smallAmpleToricDivisor(...,CoefficientRing=>...)
-- get a very ample toric divisor from the database
smallAmpleToricDivisor(...,Variable=>...)
-- get a very ample toric divisor from the database
smallAmpleToricDivisor(...,WeilToClass=>...)
-- get a very ample toric divisor from the database
smallAmpleToricDivisor(ZZ,ZZ)
-- get a very ample toric divisor from the database
smoothFanoToricVariety
-- get a smooth Fano toric variety from database
smoothFanoToricVariety(...,CoefficientRing=>...)
-- get a smooth Fano toric variety from database
smoothFanoToricVariety(...,Variable=>...)
-- get a smooth Fano toric variety from database
smoothFanoToricVariety(ZZ,ZZ)
-- get a smooth Fano toric variety from database
source(ToricMap)
-- get the source of the map
support(ToricDivisor)
-- make the list of irreducible divisors with nonzero coefficients
target(ToricMap)
-- get the target of the map
todd(CoherentSheaf)
-- compute the Todd class of a coherent sheaf
todd(NormalToricVariety)
-- compute the Todd class of a coherent sheaf
toricBlowup
-- makes the toricBlowup of a normal toric variety along a torus orbit closure
toricBlowup(List,NormalToricVariety)
-- makes the toricBlowup of a normal toric variety along a torus orbit closure
toricBlowup(List,NormalToricVariety,List)
-- makes the toricBlowup of a normal toric variety along a torus orbit closure
ToricDivisor
-- the class of all torus-invariant Weil divisors
toricDivisor
-- make a torus-invariant Weil divisor
ToricDivisor + ToricDivisor
-- perform arithmetic on toric divisors
ToricDivisor - ToricDivisor
-- perform arithmetic on toric divisors
ToricDivisor == ToricDivisor
-- equality of toric divisors
ToricDivisor == ZZ
-- equality of toric divisors
toricDivisor(...,CoefficientRing=>...)
-- make the toric divisor associated to a polyhedron
toricDivisor(...,Variable=>...)
-- make the toric divisor associated to a polyhedron
toricDivisor(...,WeilToClass=>...)
-- make the toric divisor associated to a polyhedron
toricDivisor(List,NormalToricVariety)
-- make a torus-invariant Weil divisor
toricDivisor(NormalToricVariety)
-- make the canonical divisor
toricDivisor(Polyhedron)
-- make the toric divisor associated to a polyhedron
ToricMap
-- the class of all torus-equivariant maps between normal toric varieties
ToricMap * ToricMap
-- make the composition of two toric maps
ToricMap == ToricMap
-- whether to toric maps are equal
toricProjectiveSpace
-- make a projective space as a normal toric variety
toricProjectiveSpace(...,CoefficientRing=>...)
-- make a projective space as a normal toric variety
toricProjectiveSpace(...,Variable=>...)
-- make a projective space as a normal toric variety
toricProjectiveSpace(ZZ)
-- make a projective space as a normal toric variety
variety(ToricDivisor)
-- get the underlying normal toric variety
vector(ToricDivisor)
-- make the vector of coefficients
vertices(ToricDivisor)
-- compute the vertices of the associated polytope
weightedProjectiveSpace
-- make a weighted projective space
weightedProjectiveSpace(...,CoefficientRing=>...)
-- make a weighted projective space
weightedProjectiveSpace(...,Variable=>...)
-- make a weighted projective space
weightedProjectiveSpace(List)
-- make a weighted projective space
weilDivisorGroup
-- make the group of torus-invariant Weil divisors
weilDivisorGroup(NormalToricVariety)
-- make the group of torus-invariant Weil divisors
weilDivisorGroup(ToricMap)
-- make the induced map between groups of Weil divisors
WeilToClass
-- make a normal toric variety
working with divisors
-- information about toric divisors and their related groups
working with sheaves
-- information about coherent sheaves and total coordinate rings (a.k.a. Cox rings)
working with toric maps
-- information about toric maps and the induced operations
ZZ * ToricDivisor
-- perform arithmetic on toric divisors
ZZ == ToricDivisor
-- equality of toric divisors