Macaulay2 » Documentation
Packages » NumericalAlgebraicGeometry :: isOn
next | previous | forward | backward | up | index | toc

isOn -- determines if a point belongs to a variety

Synopsis

Description

Determines whether the given point is (approximately) on the given variety, which is either represented numerically or defines by polynomials.
i1 : R = CC[x,y]

o1 = R

o1 : PolynomialRing
i2 : I = ideal((x^2+y^2+2)*x,(x^2+y^2+2)*y);

o2 : Ideal of R
i3 : e = 0.0000001

o3 = 1e-7

o3 : RR (of precision 53)
i4 : W = witnessSet(ideal I_0 , ideal(x-y), {point {{ (1-e)*ii,(1-e)*ii}},point {{ -(1+e)*ii,-(1+e)*ii}}})	

o4 = W

o4 : WitnessSet
i5 : isOn(point {{sqrt 5*ii,sqrt 3}},W)

o5 = true

See also

Ways to use isOn :

For the programmer

The object isOn is a method function with options.