Macaulay2 » Documentation
Packages » PrimaryDecomposition :: PrimaryDecomposition
next | previous | forward | backward | up | index | toc

PrimaryDecomposition -- primary decomposition and associated primes routines for ideals and modules

Description

This package provides routines for computation involving components of ideals and modules, including associated primes and primary decompositions.

The following simple example illustrates the use of removeLowestDimension, topComponents, radical, minimalPrimes, associatedPrimes, and primaryDecomposition.

i1 : R = ZZ/32003[a..d];
i2 : I = monomialCurveIdeal(R,{1,3,4})

                        3      2     2    2    3    2
o2 = ideal (b*c - a*d, c  - b*d , a*c  - b d, b  - a c)

o2 : Ideal of R
i3 : J = ideal(a^3,b^3,c^3-d^3)

             3   3   3    3
o3 = ideal (a , b , c  - d )

o3 : Ideal of R
i4 : I = intersect(I,J)

             4    3      3    3      4      3         3      4   6      3 2  
o4 = ideal (b  - a d, a*b  - a c, b*c  - a*c d - b*c*d  + a*d , c  - b*c d  -
     ------------------------------------------------------------------------
      3 3      5     5    2 3       2 3    2 4   2 4    3 3    3 3    2   3 
     c d  + b*d , a*c  - b c d - a*c d  + b d , a c  - a d  + b d  - a c*d ,
     ------------------------------------------------------------------------
      3 3    3 3     2 3    3   2    3   2      2 3   2   3    3 2     3 2   
     b c  - a d , a*b c  - a c*d  + b c*d  - a*b d , a b*c  - a c d + b c d -
     ------------------------------------------------------------------------
      2   3   3 3    3   2   4 2    3 2
     a b*d , a c  - a b*d , a c  - a b d)

o4 : Ideal of R
i5 : removeLowestDimension I

                        3      2     2    2    3    2
o5 = ideal (b*c - a*d, c  - b*d , a*c  - b d, b  - a c)

o5 : Ideal of R
i6 : topComponents I

                        3      2     2    2    3    2
o6 = ideal (b*c - a*d, c  - b*d , a*c  - b d, b  - a c)

o6 : Ideal of R
i7 : radical I

                          2    2    3    2    6    3 3    2 4      5
o7 = ideal (b*c - a*d, a*c  - b d, b  - a c, c  - c d  - b d  + b*d )

o7 : Ideal of R
i8 : minimalPrimes I

                         3      2     2    2    3    2                    
o8 = {ideal (b*c - a*d, c  - b*d , a*c  - b d, b  - a c), ideal (c - d, b,
     ------------------------------------------------------------------------
                       2          2
     a), ideal (b, a, c  + c*d + d )}

o8 : List
i9 : associatedPrimes I

                         3      2     2    2    3    2                    
o9 = {ideal (b*c - a*d, c  - b*d , a*c  - b d, b  - a c), ideal (c - d, b,
     ------------------------------------------------------------------------
                       2          2
     a), ideal (b, a, c  + c*d + d )}

o9 : List
i10 : primaryDecomposition I

                          3      2     2    2    3    2                   3 
o10 = {ideal (b*c - a*d, c  - b*d , a*c  - b d, b  - a c), ideal (c - d, b ,
      -----------------------------------------------------------------------
       3           2          2   3   3
      a ), ideal (c  + c*d + d , b , a )}

o10 : List

References

  • Eisenbud-Huneke-Vasconcelos, Inventiones mathematicae, 110 207–235 (1992)
  • Shimoyama-Yokoyama, Journal of Symbolic Computation, 22(3) 247–277 (1996)

See also

Authors

Version

This documentation describes version 2.0 of PrimaryDecomposition.

Source code

The source code from which this documentation is derived is in the file PrimaryDecomposition.m2. The auxiliary files accompanying it are in the directory PrimaryDecomposition/.

Exports

For the programmer

The object PrimaryDecomposition is a package.

Menu