i1 : R = ZZ/32003[a..d];
|
i2 : I = monomialCurveIdeal(R,{1,3,4})
3 2 2 2 3 2
o2 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o2 : Ideal of R
|
i3 : J = ideal(a^3,b^3,c^3-d^3)
3 3 3 3
o3 = ideal (a , b , c - d )
o3 : Ideal of R
|
i4 : I = intersect(I,J)
4 3 3 3 4 3 3 4 6 3 2
o4 = ideal (b - a d, a*b - a c, b*c - a*c d - b*c*d + a*d , c - b*c d -
------------------------------------------------------------------------
3 3 5 5 2 3 2 3 2 4 2 4 3 3 3 3 2 3
c d + b*d , a*c - b c d - a*c d + b d , a c - a d + b d - a c*d ,
------------------------------------------------------------------------
3 3 3 3 2 3 3 2 3 2 2 3 2 3 3 2 3 2
b c - a d , a*b c - a c*d + b c*d - a*b d , a b*c - a c d + b c d -
------------------------------------------------------------------------
2 3 3 3 3 2 4 2 3 2
a b*d , a c - a b*d , a c - a b d)
o4 : Ideal of R
|
i5 : removeLowestDimension I
3 2 2 2 3 2
o5 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o5 : Ideal of R
|
i6 : topComponents I
3 2 2 2 3 2
o6 = ideal (b*c - a*d, c - b*d , a*c - b d, b - a c)
o6 : Ideal of R
|
i7 : radical I
2 2 3 2 6 3 3 2 4 5
o7 = ideal (b*c - a*d, a*c - b d, b - a c, c - c d - b d + b*d )
o7 : Ideal of R
|
i8 : minimalPrimes I
3 2 2 2 3 2
o8 = {ideal (b*c - a*d, c - b*d , a*c - b d, b - a c), ideal (c - d, b,
------------------------------------------------------------------------
2 2
a), ideal (b, a, c + c*d + d )}
o8 : List
|
i9 : associatedPrimes I
3 2 2 2 3 2
o9 = {ideal (b*c - a*d, c - b*d , a*c - b d, b - a c), ideal (c - d, b,
------------------------------------------------------------------------
2 2
a), ideal (b, a, c + c*d + d )}
o9 : List
|
i10 : primaryDecomposition I
3 2 2 2 3 2 3
o10 = {ideal (b*c - a*d, c - b*d , a*c - b d, b - a c), ideal (c - d, b ,
-----------------------------------------------------------------------
3 2 2 3 3
a ), ideal (c + c*d + d , b , a )}
o10 : List
|