bettiStats(List)
For a sample of ideals stored as a list, this function computes some basic Betti table statistics of the sample. Namely, it computes the average shape of the Betti tables (where 1 is recorded in entry (ij) for each element if $beta_{ij}$ is not zero), and it also computes the average Betti table (that is, the table whose (ij) entry is the mean value of $beta_{ij}$ for all ideals in the sample).
|
|
|
|
|
|
For sample size $N$, the average Betti table shape considers nonzero Betti numbers. It is to be interpreted as follows: entry (i,j) encodes the following sum of indicators: $\sum_{all ideals} 1_{beta_{ij}>0} / N$; that is, the proportion of ideals with a nonzero $beta_{ij}$. Thus an entry of 0.33 means 33% of ideals have a non-zero Betti number there.
|
|
For sample size $N$, the average Betti table is to be interpreted as follows: entry $(i,j)$ encodes $\sum_{I\in ideals}beta_{ij}(R/I) / N$:
|
|
The object bettiStats is a method function with options.