Let $S=K[x_1,\ldots,x_n]$ be a polynomial ring. Given a $S$-module $M$ (or an ideal $I\subset S$), it returns the canonical module $\omega(M)$ (or $\omega(S/I)$), as $\mathrm{Ext}_S^{n-d}(M,S(-n))$, where $d=\dim M$ (or $d=\dim S/I$).
|
|
|
|
The object canonicalModule is a method function.