M = sl2EquivariantConstantRankMatrix(d,m)
M = sl2EquivariantConstantRankMatrix(d,m,CoefficientRing=>C)
M = sl2EquivariantConstantRankMatrix(R,m)
This function returns a constant rank matrix of linear forms. The matrix describes the morphism
$\Phi: S^{md-2}V \otimes O_{\PP^d} \to S^{(m-1)d}V \otimes O_{\PP^d)}(1)$
given by the projection
$S^dV \otimes S^{(m-1)d}V \to S^{md-2}V$
of the irreducible $SL(2)$-subrepresentation of highest weight $md-2$, where $\PP^d = \PP(S^dV)$ as $V=<v_0,v_1>$. In the paper A construction of equivariant bundles on the space of symmetric forms, the entries of the matrix $\Phi$ are explicitly described.
|
|
By default, sl2EquivariantConstantRankMatrix defines the matrix over a polynomial ring with rational coefficients. The optional argument CoefficientRing allows one to change the coefficient ring.
|
|
If the first argument is a polynomial ring R, then d = numgens R-1.
|
|
|
The object sl2EquivariantConstantRankMatrix is a method function with options.