Macaulay2
»
Documentation
Packages
»
SLnEquivariantMatrices
::
Index
next | previous | forward | backward | up |
index
|
toc
SLnEquivariantMatrices : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
sl2EquivariantConstantRankMatrix
-- computes a SL(2)-equivariant constant rank matrix
sl2EquivariantConstantRankMatrix(...,CoefficientRing=>...)
-- name for optional argument
sl2EquivariantConstantRankMatrix(PolynomialRing,ZZ)
-- computes a SL(2)-equivariant constant rank matrix
sl2EquivariantConstantRankMatrix(ZZ,ZZ)
-- computes a SL(2)-equivariant constant rank matrix
sl2EquivariantVectorBundle
-- computes a SL(2)-equivariant vector bundle over some projective space
sl2EquivariantVectorBundle(...,CoefficientRing=>...)
-- name for optional argument
sl2EquivariantVectorBundle(PolynomialRing,ZZ)
-- computes a SL(2)-equivariant vector bundle over some projective space
sl2EquivariantVectorBundle(ZZ,ZZ)
-- computes a SL(2)-equivariant vector bundle over some projective space
slEquivariantConstantRankMatrix
-- computes a SL-equivariant constant rank matrix
slEquivariantConstantRankMatrix(...,CoefficientRing=>...)
-- name for optional argument
slEquivariantConstantRankMatrix(PolynomialRing,ZZ,ZZ)
-- computes a SL-equivariant constant rank matrix
slEquivariantConstantRankMatrix(PolynomialRing,ZZ,ZZ,PolynomialRing)
-- computes a SL-equivariant constant rank matrix
slEquivariantConstantRankMatrix(ZZ,ZZ,ZZ)
-- computes a SL-equivariant constant rank matrix
slEquivariantConstantRankMatrix(ZZ,ZZ,ZZ,PolynomialRing)
-- computes a SL-equivariant constant rank matrix
slEquivariantVectorBundle
-- computes a SL-equivariant vector bundle over some projective space
slEquivariantVectorBundle(...,CoefficientRing=>...)
-- name for optional argument
slEquivariantVectorBundle(PolynomialRing,ZZ,ZZ)
-- computes a SL-equivariant vector bundle over some projective space
slEquivariantVectorBundle(PolynomialRing,ZZ,ZZ,PolynomialRing)
-- computes a SL-equivariant vector bundle over some projective space
slEquivariantVectorBundle(ZZ,ZZ,ZZ)
-- computes a SL-equivariant vector bundle over some projective space
slEquivariantVectorBundle(ZZ,ZZ,ZZ,PolynomialRing)
-- computes a SL-equivariant vector bundle over some projective space
slIrreducibleRepresentationsTensorProduct
-- computes the irreducible SL-subrepresentations of the tensor product of two symmetric products
slIrreducibleRepresentationsTensorProduct(PolynomialRing,ZZ,ZZ)
-- computes the irreducible SL-subrepresentations of the tensor product of two symmetric products
slIrreducibleRepresentationsTensorProduct(ZZ,ZZ,ZZ)
-- computes the irreducible SL-subrepresentations of the tensor product of two symmetric products
SLnEquivariantMatrices
-- Ancillary file to the paper "A construction of equivariant bundles on the space of symmetric forms"