W = slEquivariantVectorBundle(n,d,m)
W = slEquivariantVectorBundle(n,d,m,CoefficientRing=>C)
W = slEquivariantVectorBundle(R,d,m)
W = slEquivariantVectorBundle(n,d,m,X)
W = slEquivariantVectorBundle(R,d,m,X)
For $n=1$, this function returns the kernel of the matrix describing the morphism
$\Phi: S^{md-2}V \otimes O_{\PP^d} \to S^{(m-1)d}V \otimes O_{\PP^d)}(1)$
given by the projection
$S^dV \otimes S^{(m-1)d}V \to S^{md-2}V$
of the irreducible $SL(2)$-subrepresentation of highest weight $md-2$, where $\PP^d = \PP(S^dV)$ as $V=<v_0,v_1>$, while for $n>1$, the function returns the kernel of the matrix describing the morphism
$\Phi: V_{(md-2)\lambda_1 + \lambda_2} \otimes O_{\PP(S^dV)} \to S^{(m-1)d}V \otimes O_{\PP(S^dV)}(1)$
given by the projection
$S^dV \otimes S^{(m-1)d}V \to V_{(md-2)\lambda_1 + \lambda_2}$
of the irreducible $SL(n+1)$-subrepresentation $V_{(md-2)\lambda_1 + \lambda_2}$ of highest weight $(md-2)\lambda_1 + \lambda_2 = (md-1)L_1 + L_2$ in the tensor product $S^dV \otimes S^{(m-1)d}V$, where $V = \CC^{n+1}$ and $\lambda_1$ and $\lambda_2$ are the two greatest fundamental weights of the Lie group $SL(n+1)$.
In the paper A construction of equivariant bundles on the space of symmetric forms, it is proved that the matrix $\Phi$ has constant co-rank 1, so that the kernel $W = ker \Phi$ turns out to be a vector bundle.
|
|
By default, slEquivariantVectorBundle defines the vector bundle over a projective space whose coordinate ring has rational coefficients. The optional argument CoefficientRing allows one to change the coefficient ring.
|
|
If the first argument is a polynomial ring R, then n = numgens R-1.
|
|
|
If the last argument is polynomial ring X (and X has the same number of variables of the coordinate ring of $\PP(S^d\CC^{n+1})$), then the vector bundle is defined over the projective space Proj(X).
|
|
|
|
|
|
The object slEquivariantVectorBundle is a method function with options.