next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
Saturation :: module quotients, saturation, and annihilator

module quotients, saturation, and annihilator

Module Quotients

There are two notions associated to the colon construction for modules.

Similar to the case of ideals, the quotient of two $R$-modules $M, N$ contained in the same ambient module is an ideal $M:N$ of elements $f\in R$ such that $f N \subset M$. This is equivalent to the annihilator of the quotient module $(M+N)/M$.

The quotient of an $R$-module $M\subset F$ with respect to an ideal $J\subset R$ is the module $M:_F J$ of elements $f\in F$ such that $J f\subset M$.

Saturation of Modules

The saturation of an $R$-module $M\subset F$ with respect to an ideal $J\subset R$ is an $R$-module $M:_F J^\infty$ of elements $f\in F$ such that $J^N f\subset M$ for some $N$ large enough. If the ideal $J$ is not given, the ideal generated by the variables of the ring $R$ is used.

If $M=M:_F J^\infty$ (or, equivalently, $M=M:_F J$), we say that $M$ is saturated with respect to $J$. We can use this command to remove graded submodules of finite length.

i1 : R = ZZ/32003[a..d];
i2 : m = ideal vars R

o2 = ideal (a, b, c, d)

o2 : Ideal of R
i3 : M = R^1 / (a * m^2)

o3 = cokernel | a3 a2b a2c a2d ab2 abc abd ac2 acd ad2 |

                            1
o3 : R-module, quotient of R
i4 : M / saturate 0_M

o4 = cokernel | a a3 a2b a2c a2d ab2 abc abd ac2 acd ad2 |

                            1
o4 : R-module, quotient of R

Module Annihilators

The annihilator of an $R$-module $M$ is the ideal $\mathrm{ann}(M) = \{ f \in R | f M = 0 \}$.

i5 : R = QQ[a..i];
i6 : M = cokernel genericMatrix(R,a,3,3)

o6 = cokernel | a d g |
              | b e h |
              | c f i |

                            3
o6 : R-module, quotient of R
i7 : annihilator M

o7 = ideal(c*e*g - b*f*g - c*d*h + a*f*h + b*d*i - a*e*i)

o7 : Ideal of R

You may also use the abbreviation ann:

i8 : ann (M/(a*M))

o8 = ideal (a, c*e*g - b*f*g - c*d*h + b*d*i)

o8 : Ideal of R