Macaulay2 » Documentation
Packages » SchurRings :: internalProduct(ClassFunction,ClassFunction)
next | previous | forward | backward | up | index | toc

internalProduct(ClassFunction,ClassFunction) -- Tensor product of virtual representations

Description

Given virtual characters ch1 and ch2, the method computes the character of the tensor product of corresponding virtual representations of the symmetric group.

i1 : ch1 = new ClassFunction from {{4,4} => 2, {8} => -1, {5,2,1} => 2, {3,2,2,1} => 1};
i2 : ch2 = new ClassFunction from {{2,2,2,2} => -4, {5,2,1} => 1, {3,2,2,1} => 3};
i3 : internalProduct(ch1,ch2)

o3 = ClassFunction{{3, 2, 2, 1} => 3}
                   {5, 2, 1} => 2

o3 : ClassFunction
i4 : ch1 * ch2

o4 = ClassFunction{{3, 2, 2, 1} => 3}
                   {5, 2, 1} => 2

o4 : ClassFunction

Ways to use this method:


The source of this document is in SchurRings.m2:3023:0.