schurBetti(d,n,b)
This function returns a hash table with the Schur functor decompositions of the syzygies of $\mathcal{O}(b)$ under the embedding by $\mathcal{O}(d)$. The keys of the hash table $H$ are pairs $(p,q)$ where $H#(p,q)$ gives the Schur functor decomposition of $K_{p,q}(\mathbb{P}^n, d;b)$. $\mathcal{O}(b)$ the Schur functor decomposition as a list of tuples $(\{a_1,a_2,a_3\},b)$ where $\{a_1,a_2,a_3\}$ specifies the weight of the Schur functor and $m$ the multiplicity with which that particular Schur functor appears in the decomposition of $K_{p,q}(\mathbb{P}^n, d;b)$.
Some tables are incomplete and we mark unknown entries with ({0,0,0},infinity).
|
The object schurBetti is a method function.