cycleIdeal(...,CoefficientRing=>...) -- specifies the coefficient ring of the underlying ring of the ideal
Synopsis
-
- Usage:
cycleIdeal(..., CoefficientRing => QQ)
cycleIdeal(..., CoefficientRing => ZZ/7)
cycleIdeal(..., CoefficientRing => GF(9))
Further information
-
Default value: QQ
-
Function: cycleIdeal -- constructs the cycle ideal of a realization
-
Option key: CoefficientRing -- an optional argument
Functions with optional argument named CoefficientRing:
-
cycleIdeal(...,CoefficientRing=>...) -- specifies the coefficient ring of the underlying ring of the ideal
-
flattenRing(...,CoefficientRing=>...) -- optionally specify the desired coefficient ring of the flattened ring
-
generators(...,CoefficientRing=>...) -- see generators(Ring) -- the list of generators of a ring
-
graphicIdeal(...,CoefficientRing=>...) -- specifies the coefficient ring of the underlying ring of the ideal
-
Grassmannian(...,CoefficientRing=>...) -- see Grassmannian(ZZ,ZZ) -- the Grassmannian of linear subspaces of a vector space
-
grassmannSectionIdeal(...,CoefficientRing=>...) -- specifies the coefficient ring of the underlying ring of the ideal
-
hibiIdeal(...,CoefficientRing=>...) -- see hibiIdeal -- produces the Hibi ideal of a poset
-
hibiRing(...,CoefficientRing=>...) -- see hibiRing -- produces the Hibi ring of a poset
-
idealChowRing(...,CoefficientRing=>...) -- see idealChowRing -- the defining ideal of the Chow ring
-
idealOrlikSolomonAlgebra(...,CoefficientRing=>...) (missing documentation)
-
orderComplex(...,CoefficientRing=>...) -- see orderComplex -- produces the order complex of a poset
-
pPartitionRing(...,CoefficientRing=>...) -- see pPartitionRing -- produces the p-partition ring of a poset
-
reconstructSlackMatrix(...,CoefficientRing=>...) -- specifies the coefficient ring of the underlying ring of the ideal
-
reducedSlackMatrix(...,CoefficientRing=>...) -- specifies the coefficient ring of the underlying ring of the ideal
-
Schubert(...,CoefficientRing=>...) -- see Schubert(ZZ,ZZ,VisibleList) -- find the Plücker ideal of a Schubert variety
-
slackIdeal(...,CoefficientRing=>...) -- specifies the coefficient ring of the underlying ring of the ideal
-
symbolicSlackMatrix(...,CoefficientRing=>...) -- specifies the coefficient ring of the underlying ring of the matrix
-
symbolicSlackOfPlucker(...,CoefficientRing=>...) -- specifies the coefficient ring of the underlying ring of the matrix
-
universalIdeal(...,CoefficientRing=>...) -- specifies the coefficient ring of the underlying ring of the ideal