Macaulay2 » Documentation
Packages » StronglyStableIdeals :: isHilbertPolynomial
next | previous | forward | backward | up | index | toc

isHilbertPolynomial -- Determine whether a numerical polynomial can be a Hilbert polynomial

Description

Returns true if the input polynomial is an admissible Hilbert polynomial, false otherwise.

i1 : QQ[t];
i2 : isHilbertPolynomial(3*t+4)

o2 = true
i3 : isHilbertPolynomial((2/3)*t-1)

o3 = false
i4 : isHilbertPolynomial(2*projectiveHilbertPolynomial(2))

o4 = true
i5 : isHilbertPolynomial(2*projectiveHilbertPolynomial(2,-1))

o5 = false

Ways to use isHilbertPolynomial:

  • isHilbertPolynomial(ProjectiveHilbertPolynomial)
  • isHilbertPolynomial(RingElement)

For the programmer

The object isHilbertPolynomial is a method function.


The source of this document is in StronglyStableIdeals.m2:717:0.