Macaulay2
»
Documentation
Packages
»
StronglyStableIdeals
::
Index
next | previous | forward | backward | up |
index
|
toc
StronglyStableIdeals : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
gotzmannDecomposition
-- Compute Gotzmann's decomposition of Hilbert polynomial
gotzmannDecomposition(ProjectiveHilbertPolynomial)
-- Compute Gotzmann's decomposition of Hilbert polynomial
gotzmannDecomposition(RingElement)
-- Compute Gotzmann's decomposition of Hilbert polynomial
gotzmannNumber
-- Compute the Gotzmann number of a Hilbert polynomial
gotzmannNumber(ProjectiveHilbertPolynomial)
-- Compute the Gotzmann number of a Hilbert polynomial
gotzmannNumber(RingElement)
-- Compute the Gotzmann number of a Hilbert polynomial
isGenSegment
-- gen-segment ideals
isGenSegment(Ideal)
-- gen-segment ideals
isGenSegment(MonomialIdeal)
-- gen-segment ideals
isHilbertPolynomial
-- Determine whether a numerical polynomial can be a Hilbert polynomial
isHilbertPolynomial(ProjectiveHilbertPolynomial)
-- Determine whether a numerical polynomial can be a Hilbert polynomial
isHilbertPolynomial(RingElement)
-- Determine whether a numerical polynomial can be a Hilbert polynomial
isHilbSegment
-- hilb-segment ideals
isHilbSegment(Ideal)
-- hilb-segment ideals
isHilbSegment(MonomialIdeal)
-- hilb-segment ideals
isRegSegment
-- reg-segment ideals
isRegSegment(Ideal)
-- reg-segment ideals
isRegSegment(MonomialIdeal)
-- reg-segment ideals
lexIdeal
-- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
lexIdeal(...,CoefficientRing=>...)
-- Option to set the ring of coefficients
lexIdeal(...,OrderVariables=>...)
-- Option to set the order of indexed variables
lexIdeal(ProjectiveHilbertPolynomial,PolynomialRing)
-- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
lexIdeal(ProjectiveHilbertPolynomial,ZZ)
-- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
lexIdeal(RingElement,PolynomialRing)
-- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
lexIdeal(RingElement,ZZ)
-- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
lexIdeal(ZZ,PolynomialRing)
-- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
lexIdeal(ZZ,ZZ)
-- Compute the saturated lexicographic ideal in the given ambient space with given Hilbert polynomial
macaulayDecomposition
-- Compute Macaulay's decomposition of Hilbert polynomial
macaulayDecomposition(ProjectiveHilbertPolynomial)
-- Compute Macaulay's decomposition of Hilbert polynomial
macaulayDecomposition(RingElement)
-- Compute Macaulay's decomposition of Hilbert polynomial
MaxRegularity
-- Option to set the maximum regularity
OrderVariables
-- Option to set the order of indexed variables
projectiveHilbertPolynomial(RingElement)
StronglyStableIdeals
-- Find strongly stable ideals with a given Hilbert polynomial
stronglyStableIdeals
-- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
stronglyStableIdeals(...,CoefficientRing=>...)
-- Option to set the ring of coefficients
stronglyStableIdeals(...,MaxRegularity=>...)
-- Option to set the maximum regularity
stronglyStableIdeals(...,OrderVariables=>...)
-- Option to set the order of indexed variables
stronglyStableIdeals(ProjectiveHilbertPolynomial,PolynomialRing)
-- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
stronglyStableIdeals(ProjectiveHilbertPolynomial,ZZ)
-- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
stronglyStableIdeals(RingElement,PolynomialRing)
-- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
stronglyStableIdeals(RingElement,ZZ)
-- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
stronglyStableIdeals(ZZ,PolynomialRing)
-- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial
stronglyStableIdeals(ZZ,ZZ)
-- Compute the saturated strongly stable ideals in the given ambient space with given Hilbert polynomial