Macaulay2 » Documentation
Packages » TateOnProducts :: upperCorner
next | previous | forward | backward | up | index | toc

upperCorner -- compute the upper corner

Synopsis

Description

Let $k = -|d|$ be the total degree and $G \subset F_k$ the summand spanned by the generators of $F_k$ in degree d, $H \subset F_{k-1}$ the summand spanned by generators of degree d' with $0 \le d'-d \le n$. The function returns the corresponding submatrix $m: G -> H$ of the differential.

So the source will be generated in a single degree, and the target will be generated in multiple degrees. The names comes from the fact that when we resolve this map, this map creates the "upper corner" in the corner complex.

i1 : n={1,2};
i2 : (S,E) = productOfProjectiveSpaces n

o2 = (S, E)

o2 : Sequence
i3 : F=dual res((ker transpose vars E)**E^{{ 2,3}},LengthLimit=>4)

      70      35      15      5      1
o3 = E   <-- E   <-- E   <-- E  <-- E
                                     
     -4      -3      -2      -1     0

o3 : ChainComplex
i4 : cohomologyMatrix(F,-{3,3},{4,4})

o4 = | 0 0 0 15 0  0  0  0 |
     | 0 0 0 10 20 0  0  0 |
     | 0 0 0 6  12 18 0  0 |
     | 0 0 0 3  6  9  12 0 |
     | 0 0 0 1  2  3  4  5 |
     | 0 0 0 0  0  0  0  0 |
     | 0 0 0 0  0  0  0  0 |
     | 0 0 0 0  0  0  0  0 |

                      8               8
o4 : Matrix (ZZ[h, k])  <-- (ZZ[h, k])
i5 : betti F

            -4 -3 -2 -1 0
o5 = total: 70 35 15  5 1
         0: 70 35 15  5 1

o5 : BettiTally
i6 : tallyDegrees F

o6 = (Tally{{-1, -3} => 20}, Tally{{-1, -2} => 12}, Tally{{-1, -1} => 6},
            {-2, -2} => 18         {-2, -1} => 9          {-2, 0} => 3   
            {-3, -1} => 12         {-3, 0} => 4           {0, -2} => 6
            {-4, 0} => 5           {0, -3} => 10
            {0, -4} => 15
     ------------------------------------------------------------------------
     Tally{{-1, 0} => 2}, Tally{{0, 0} => 1})
           {0, -1} => 3

o6 : Sequence
i7 : deg={2,1}

o7 = {2, 1}

o7 : List
i8 : m=upperCorner(F,deg);

             30      9
o8 : Matrix E   <-- E
i9 : tally degrees target m, tally degrees source m

o9 = (Tally{{-2, -2} => 18}, Tally{{-2, -1} => 9})
            {-3, -1} => 12

o9 : Sequence
i10 : Fm=(res(coker m,LengthLimit=>4))[sum deg+1]

       30      9      2      3      8
o10 = E   <-- E  <-- E  <-- E  <-- E
                                    
      -4      -3     -2     -1     0

o10 : ChainComplex
i11 : betti Fm

             -4 -3 -2 -1 0
o11 = total: 30  9  2  3 8
          0: 30  9  .  . .
          1:  .  .  2  1 .
          2:  .  .  .  . 1
          3:  .  .  .  2 7

o11 : BettiTally
i12 : cohomologyMatrix(Fm,-{3,3},{4,4})

o12 = | 0 0  0 0  0   0  0  0 |
      | 0 0  0 0  0   0  0  0 |
      | 0 0  0 0  0   18 0  0 |
      | 0 0  0 0  0   9  12 0 |
      | 0 h2 0 h  2h  0  0  0 |
      | 0 0  0 0  0   0  0  0 |
      | 0 0  0 0  0   0  0  0 |
      | 0 0  0 h3 2h3 0  0  0 |

                       8               8
o12 : Matrix (ZZ[h, k])  <-- (ZZ[h, k])

Ways to use upperCorner:

For the programmer

The object upperCorner is a method function.