Macaulay2
»
Documentation
Packages
»
TateOnProducts
::
Index
next | previous | forward | backward | up |
index
|
toc
TateOnProducts : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
actionOnDirectImage
-- recover the module structure via a Noether normalization
actionOnDirectImage(Ideal,ChainComplex)
-- recover the module structure via a Noether normalization
actionOnDirectImage(Ideal,Module)
-- recover the module structure via a Noether normalization
actionOnDirectImage(Ideal,Module,Matrix)
-- recover the module structure via a Noether normalization
beilinson
-- apply the beilinson functor
beilinson(...,BundleType=>...)
-- apply the beilinson functor
beilinson(ChainComplex)
-- apply the beilinson functor
beilinson(Matrix)
-- apply the beilinson functor
beilinson(Module)
-- apply the beilinson functor
beilinsonBundle
-- compute a basic Beilinson bundle
beilinsonBundle(...,BundleType=>...)
-- compute a basic Beilinson bundle
beilinsonBundle(List,Ring)
-- compute a basic Beilinson bundle
beilinsonBundle(ZZ,ZZ,Ring)
-- compute a basic Beilinson bundle
beilinsonContraction
-- compute a Beilinson contraction
beilinsonContraction(...,BundleType=>...)
-- compute a Beilinson contraction
beilinsonContraction(RingElement,List,List)
-- compute a Beilinson contraction
beilinsonWindow
-- extract the subquotient complex which contributes to the Beilinson window
beilinsonWindow(ChainComplex)
-- extract the subquotient complex which contributes to the Beilinson window
bgg
-- make a linear free complex from a module over an exterior algebra or a symmetric algebra
bgg(...,LengthLimit=>...)
-- make a linear free complex from a module over an exterior algebra or a symmetric algebra
bgg(Module)
-- make a linear free complex from a module over an exterior algebra or a symmetric algebra
BundleType
-- Option in beilinson with values PrunedQuotient, QuotientBundle, DummyQuotientBundle, SubBundle, FreeBundle, or MapsBetweenFreeBundles
coarseMultigradedRegularity
-- A truncation that has linear resolution
coarseMultigradedRegularity(...,Strategy=>...)
-- A truncation that has linear resolution
coarseMultigradedRegularity(ChainComplex)
-- A truncation that has linear resolution
coarseMultigradedRegularity(Module)
-- A truncation that has linear resolution
CoefficientField
-- Option for productOfProjectiveSpaces
cohomologyHashTable
-- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
cohomologyHashTable(ChainComplex,List,List)
-- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
cohomologyHashTable(Module,List,List)
-- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
cohomologyMatrix
-- cohomology groups of a sheaf on P^{n_1}xP^{n_2}, or of (part) of a Tate resolution
cohomologyMatrix(ChainComplex,List,List)
-- cohomology groups of a sheaf on P^{n_1}xP^{n_2}, or of (part) of a Tate resolution
cohomologyMatrix(Module,List,List)
-- cohomology groups of a sheaf on P^{n_1}xP^{n_2}, or of (part) of a Tate resolution
CohomologyVariables
-- Option for productOfProjectiveSpaces
composedFunctions
-- composed functions
ContractionData
-- name of a cached datum
contractionData
-- Compute the action of monomials in the exterior algebra on the Beilinson monad
contractionData(...,BundleType=>...)
-- Compute the action of monomials in the exterior algebra on the Beilinson monad
contractionData(List,List,Ring)
-- Compute the action of monomials in the exterior algebra on the Beilinson monad
cornerComplex
-- form the corner complex
cornerComplex(ChainComplex,List)
-- form the corner complex
cornerComplex(Module,List,List,List)
-- form the corner complex
directImageComplex
-- compute the direct image complex
directImageComplex(Ideal,Module,Matrix)
-- compute the direct image complex
directImageComplex(Module,List)
-- compute the direct image complex
DummyQuotientBundle
-- value for the option BundleType in beilinson
eulerPolynomialTable
-- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
eulerPolynomialTable(ChainComplex,List,List)
-- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
eulerPolynomialTable(HashTable)
-- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
eulerPolynomialTable(Module,List,List)
-- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
firstQuadrantComplex
-- form the first quadrant complex
firstQuadrantComplex(ChainComplex,List)
-- form the first quadrant complex
FreeBundle
-- value for the option BundleType in beilinson
InitialDegree
-- Option for chainComplexMap
isAction
-- test whether a list of square matrices induces an action
isAction(Ideal,List)
-- test whether a list of square matrices induces an action
isIsomorphic
-- probabilistic test for homogeneous isomorphism
isIsomorphic(Module,Module)
-- probabilistic test for homogeneous isomorphism
isQuism
-- Test to see if the ChainComplexMap is a quasiisomorphism.
isQuism(ChainComplexMap)
-- Test to see if the ChainComplexMap is a quasiisomorphism.
lastQuadrantComplex
-- form the last quadrant complex
lastQuadrantComplex(ChainComplex,List)
-- form the last quadrant complex
lowerCorner
-- compute the lower corner
lowerCorner(ChainComplex,List)
-- compute the lower corner
MapsBetweenFreeBundles
-- value for the option BundleType in beilinson
productOfProjectiveSpaces
-- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
productOfProjectiveSpaces(...,CoefficientField=>...)
-- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
productOfProjectiveSpaces(...,CohomologyVariables=>...)
-- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
productOfProjectiveSpaces(...,Variables=>...)
-- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
productOfProjectiveSpaces(List)
-- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
productOfProjectiveSpaces(ZZ)
-- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
PrunedQuotient
-- value for the option BundleType in beilinson
QuotientBundle
-- value for the option BundleType in beilinson
regionComplex
-- region complex
regionComplex(ChainComplex,List,Sequence)
-- region complex
Rings
-- Option for productOfProjectiveSpaces
strand
-- take the strand
strand(ChainComplex,List,List)
-- take the strand
SubBundle
-- value for the option BundleType in beilinson
symExt
-- from linear presentation matrices over S to linear presentation matrices over E and conversely
symExt(Matrix,Ring)
-- from linear presentation matrices over S to linear presentation matrices over E and conversely
tallyDegrees
-- collect the degrees of the generators of the terms in a free complex
tallyDegrees(ChainComplex)
-- collect the degrees of the generators of the terms in a free complex
TateData
-- symbol used in beilinsonBundle
tateData
-- reads TateData from the cache of an appropriate ring
tateData(Ring)
-- reads TateData from the cache of an appropriate ring
tateExtension
-- extend the terms in the Beilinson window to a part of a corner complex of the corresponding Tate resolution
tateExtension(ChainComplex)
-- extend the terms in the Beilinson window to a part of a corner complex of the corresponding Tate resolution
TateOnProducts
-- Computation of parts of the Tate resolution on products
tateResolution
-- compute the Tate resolution
tateResolution(Matrix,List,List)
-- compute the Tate resolution
tateResolution(Module,List,List)
-- compute the Tate resolution
trivialHomologicalTruncation
-- return the trivial truncation of a chain complex
trivialHomologicalTruncation(ChainComplex,ZZ,ZZ)
-- return the trivial truncation of a chain complex
upperCorner
-- compute the upper corner
upperCorner(ChainComplex,List)
-- compute the upper corner