i1 : (S,E) = productOfProjectiveSpaces {1,1};
|
i2 : T1= (dual res( trim (ideal vars E)^2,LengthLimit=>8))[1];
|
i3 : T=trivialHomologicalTruncation(T2=res(coker upperCorner(T1,{4,3}),LengthLimit=>13)[7],-5,6);
|
i4 : betti T
-5 -4 -3 -2 -1 0 1 2 3 4 5 6
o4 = total: 22 27 26 36 63 98 136 181 236 304 388 491
0: 22 27 18 6 . . . . . . . .
1: . . 8 30 63 98 132 166 200 234 268 302
2: . . . . . . 4 15 36 70 120 189
o4 : BettiTally
|
i5 : cohomologyMatrix(T,-{4,4},{3,2})
o5 = | 27h 20h 13h 6h 1 8 15 22 |
| 16h 12h 8h 4h 0 4 8 12 |
| 5h 4h 3h 2h h 0 1 2 |
| 6h2 4h2 2h2 0 2h 4h 6h 8h |
| 17h2 12h2 7h2 2h2 3h 8h 13h 18h |
| 28h2 20h2 12h2 4h2 4h 12h 20h 28h |
| 39h2 28h2 17h2 6h2 5h 16h 27h 38h |
7 8
o5 : Matrix (ZZ[h, k]) <-- (ZZ[h, k])
|
i6 : fqT=firstQuadrantComplex(T,-{2,1});
|
i7 : betti fqT
-5 -4 -3 -2 -1 0 1
o7 = total: 22 27 26 18 22 12 5
0: 22 27 18 6 . . .
1: . . 8 12 22 12 3
2: . . . . . . 2
o7 : BettiTally
|
i8 : cohomologyMatrix(fqT,-{4,4},{3,2})
o8 = | 0 0 13h 6h 1 8 15 22 |
| 0 0 8h 4h 0 4 8 12 |
| 0 0 3h 2h h 0 1 2 |
| 0 0 2h2 0 2h 4h 6h 8h |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
7 8
o8 : Matrix (ZZ[h, k]) <-- (ZZ[h, k])
|
i9 : cohomologyMatrix(fqT,-{2,1},-{1,0})
o9 = | 3h 2h |
| 2h2 0 |
2 2
o9 : Matrix (ZZ[h, k]) <-- (ZZ[h, k])
|
i10 : lqT=lastQuadrantComplex(T,-{2,1});
|
i11 : betti lqT
3 4 5 6
o11 = total: 12 37 78 138
2: 12 37 78 138
o11 : BettiTally
|
i12 : cohomologyMatrix(lqT,-{4,4},{3,2})
o12 = | 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| 0 0 0 0 0 0 0 0 |
| 17h2 12h2 0 0 0 0 0 0 |
| 28h2 20h2 0 0 0 0 0 0 |
| 39h2 28h2 0 0 0 0 0 0 |
7 8
o12 : Matrix (ZZ[h, k]) <-- (ZZ[h, k])
|
i13 : cohomologyMatrix(lqT,-{3,2},-{2,1})
o13 = | 0 0 |
| 12h2 0 |
2 2
o13 : Matrix (ZZ[h, k]) <-- (ZZ[h, k])
|
i14 : cT=cornerComplex(T,-{2,1});
|
i15 : betti cT
-5 -4 -3 -2 -1 0 1 2 3 4 5
o15 = total: 22 27 26 18 22 12 5 12 37 78 138
0: 22 27 18 6 . . . . . . .
1: . . 8 12 22 12 3 . . . .
2: . . . . . . 2 . . . .
3: . . . . . . . 12 37 78 138
o15 : BettiTally
|
i16 : cohomologyMatrix(cT,-{4,4},{3,2})
o16 = | 0 0 13h 6h 1 8 15 22 |
| 0 0 8h 4h 0 4 8 12 |
| 0 0 3h 2h h 0 1 2 |
| 0 0 2h2 0 2h 4h 6h 8h |
| 17h3 12h3 0 0 0 0 0 0 |
| 28h3 20h3 0 0 0 0 0 0 |
| 39h3 28h3 0 0 0 0 0 0 |
7 8
o16 : Matrix (ZZ[h, k]) <-- (ZZ[h, k])
|