Given a homogeneous ideal $I$, with minimal homogeneous generating set $\{f_1,\dots,f_m\}$, this method yields the bigraded map $g: \mathbb{K}[x_1,\dots,x_n,y_1,\dots,y_m] \to \mathbb{K}[x_1,\dots,x_n,t]$ defined by setting $g(x_i) = x_i$ for $1 \le i \le n$ and $g(y_j) = f_j t$ for $1 \le j \le m$ and with $\text{bideg}(x_i) = (1,0)$ and $\text{bideg}(y_j) = (\text{deg}(f_j), 1)$.
|
|
|
|
|
|
The object reesMap is a method function.