This method computes the module $\text{Soc}_\mathfrak{p}^*(I)$. Let $\mathcal{R}(I)=\bigoplus_{k\ge0}I^k$ be the Rees algebra of $I$. For the prime $\mathfrak{p}\in\text{Ass}^\infty(I)$, we set $$X_\mathfrak{p}=\begin{cases}S&\text{if}\ \mathfrak{p}\in\text{Max}^\infty(I),\\ \prod\{\mathfrak{q}\in\text{Ass}^\infty(I):\mathfrak{p}\subsetneq\mathfrak{q}\}&\text{otherwise}.\end{cases}$$ Let $\mathcal{R}'=\bigoplus_{k\ge0}I^{k+1}$. We set $$\text{Soc}_\mathfrak{p}^*(I)=\frac{(\mathcal{R}':_{\mathcal{R}(I)}\mathfrak{p}\mathcal{R}(I))}{(\mathcal{R}':_{\mathcal{R}(I)}(\mathfrak{p}+X_\mathfrak{p}^\infty)\mathcal{R}(I))}.$$ Here $X_\mathfrak{p}^\infty=\bigcup_{k\ge0}(\mathfrak{p}:\mathfrak{m}^k)$ is the saturation of $\mathfrak{p}$ with respect to the maximal ideal $\mathfrak{m}=(x_1,\dots,x_n)$. As proved by Conca, for all $k\gg0$ we have $$\text{Soc}_\mathfrak{p}^*(I)_{(*,k)}=\frac{(I^{k+1}:\mathfrak{p})}{I^{k+1}:(\mathfrak{p}+X_\mathfrak{p}^\infty)},$$ and the initial degree of this module is the $\text{v}_\mathfrak{p}$-number of $I^{k+1}$.
|
|
|
|
The object soc is a method function.