Macaulay2 » Documentation
Packages » Valuations :: lowestTermValuation
next | previous | forward | backward | up | index | toc

lowestTermValuation -- The valuation defined by lowest terms

Synopsis

Description

This function builds a valuation which returns the exponent vector of the lead term of a polynomial with respect to the ring's term order. The valuation returns vectors in an ordered $\QQ$-module, which respects the monomial order of the PolynomialRing. For more details see Ordered modules.

i1 : R = QQ[a,b,c, MonomialOrder => Lex];
i2 : vR = lowestTermValuation R;
i3 : f = 13*a^2*b + a*c^3;
i4 : g = 5*a^2*c + b^3;
i5 : vR f

o5 = | 1 |
     | 0 |
     | 3 |

o5 : Ordered QQ^3 module
i6 : vR f < vR g

o6 = false
i7 : S = QQ[a,b,c, MonomialOrder => RevLex, Global => false];
i8 : vS = lowestTermValuation S;
i9 : f = 13*a^2*b + a*c^3;
i10 : g = 5*a^2*c + b^3;
i11 : vS f

o11 = | 2 |
      | 1 |
      | 0 |

o11 : Ordered QQ^3 module
i12 : vS f < vS g

o12 = true

See also

Ways to use lowestTermValuation:

For the programmer

The object lowestTermValuation is a method function.