(F,R,G,C) = versalDeformation(F0)
(F,R,G,C) = versalDeformation(F0,T1,T2)
Each element of the sequence (F,R,G,C) is a list of matrices in increasing powers of the deformation parameter. The input (f,r,g,c) should be a valid solution to the deformation equation output in the form done by versalDeformation(Matrix,Matrix,Matrix). This function continues lifting this solution to higher order. All options described for versalDeformation(Matrix) may be used to the same effect.
After each step of lifting, the solution (F,R,G,C) to the deformation equation is cached. By default, it is stored in (f_0).cache#VersalDeformationResults but may stored elsewhere by setting the option CacheName to something other than null.
This function is especially useful for finding one-parameter families when the versal family is too complicated to calculate.
We may consider the example of the versal deformation of a degree 12 toric Fano threefold:
|
|
|
|
We stop the calculation at order 2, since in this case, the solution to the deformation equation calculated by the lifting algorithm will not be polynomial. Equations for the tangent cone at the origin of a versal base space are
|
|
This decomposes into four components:
|
We now find a one-parameter deformation onto the component of highest dimension:
|
|
|
|
|
|
|
|