Macaulay2
»
Documentation
Packages
»
VersalDeformations
::
Table of Contents
next | previous | forward | backward | up |
index
|
toc
VersalDeformations : Table of Contents
VersalDeformations
-- calculating versal deformations and local Hilbert schemes
CacheName
-- determines hash table in which to cache solutions to the deformation equation
checkComparisonTheorem
-- checks if the Piene-Schlessinger or Di Dennaro comparison theorem holds
checkTangentSpace
-- checks if dimension of space of sections of the normal bundle agrees with that calculated using normalMatrix
correctDeformation
-- correct lifting to avoid obstructions at next order
CorrectionMatrix
-- determines the first order deformations used in correcting liftings
correctionMatrix
-- calculate how first order deformations perturb obstruction vector
cotangentCohomology1
-- calculate first cotangent cohomology
cotangentCohomology2
-- calculate second cotangent cohomology
CT
-- cotangent cohomology
DefParam
-- deformation parameter
DegreeBound
-- determines the degree limit used to compute the tangent cone of obstruction equations
extMatrix
-- calculate obstruction space for modules
firstOrderDeformations
-- use tangent space to create first order perturbations and find relations
HighestOrder
-- sets the order to which we compute
liftDeformation
-- lift a solution of the deformation equation to the next order
liftDeformation(...,Verbose=>...)
-- control the verbosity of output
localHilbertScheme
-- computes a power series representation of the local Hilbert scheme
normalMatrix
-- calculate normal module
PolynomialCheck
-- checks if power series solution terminates
SanityCheck
-- checks if lifting solves deformation equation
SmartLift
-- chooses lifting to avoid obstructions at next order
versalDeformation
-- computes a power series representation of a versal deformation
versalDeformation(List,List,List,List)
-- continues calculation of a versal deformation
versalDeformation(Matrix)
-- computes a power series representation of a versal deformation
versalDeformation(Matrix,Matrix,Matrix)
-- computes a power series representation of a versal deformation
VersalDeformationResults
-- hash table key for cached solutions to the deformation equation