Macaulay2 » Documentation
Packages » WeylGroups :: WeylGroupDoubleCoset == WeylGroupDoubleCoset
next | previous | forward | backward | up | index | toc

WeylGroupDoubleCoset == WeylGroupDoubleCoset -- equality of double cosets

Synopsis

Description

i1 : R=rootSystemD(5)

o1 = RootSystem{...8...}

o1 : RootSystem
i2 : P=parabolic(R,set{2,3,4,5})

o2 = set {2, 3, 4, 5}

o2 : Parabolic
i3 : w=longestWeylGroupElement R

o3 = WeylGroupElement{RootSystem{...8...}, | -1 |}
                                           | -1 |
                                           | -1 |
                                           | -1 |
                                           | -1 |

o3 : WeylGroupElement
i4 : w1=P % (w % P)

o4 = WeylGroupDoubleCoset{set {2, 3, 4, 5}, set {2, 3, 4, 5}, WeylGroupElement{RootSystem{...8...}, | -7 |}}
                                                                                                    |  1 |
                                                                                                    |  1 |
                                                                                                    |  1 |
                                                                                                    |  1 |

o4 : WeylGroupDoubleCoset
i5 : w2=P % ((reduce(R,{4}) * w * reduce(R,{2,3})) % P)

o5 = WeylGroupDoubleCoset{set {2, 3, 4, 5}, set {2, 3, 4, 5}, WeylGroupElement{RootSystem{...8...}, | -7 |}}
                                                                                                    |  1 |
                                                                                                    |  1 |
                                                                                                    |  1 |
                                                                                                    |  1 |

o5 : WeylGroupDoubleCoset
i6 : w1==w2

o6 = true

Ways to use this method: