next | previous | forward | backward | up | index | toc

# gfanLeadingTerms -- leading terms of a list (or list of lists) of marked polynomials

## Synopsis

• Usage:
T = gfanLeadingTerms(L)
T = gfanLeadingTerms(M)
• Inputs:
• M, a list, of MarkedPolynomialLists
• Optional inputs:
• m
• Outputs:
• T, a list, the leading terms of L (or lists of the leading terms of each list in M)

## Description

This method produces a list of the marked terms in a marked polynomial list. If the m option is used it produces a list of the leading terms for a list of marked polynomial lists.

This functionality is already provided in Macaulay 2 by the first function.

 i1 : QQ[x,y,z]; i2 : L = gfanMarkPolynomialSet({x*y^3+z^4, x^2*z^2 + y^3*z}, {-1,2,5}) 4 3 3 2 2 o2 = {(z ) + x*y , (y z) + x z } o2 : MarkedPolynomialList i3 : gfanLeadingTerms L 4 3 o3 = {z , y z} o3 : List i4 : first L 4 3 o4 = {z , y z} o4 : List i5 : M = gfanMarkPolynomialSet({x^2*y+y*z^2, x*z^2 + x*y*z}, {-1,2,5}) 2 2 2 o5 = {(y*z ) + x y, (x*z ) + x*y*z} o5 : MarkedPolynomialList i6 : gfanLeadingTerms({M,L}, "m" => true) 2 2 4 3 o6 = {{y*z , x*z }, {z , y z}} o6 : List i7 : {M,L} / first 2 2 4 3 o7 = {{y*z , x*z }, {z , y z}} o7 : List

gfan Documentation

This program converts a list of polynomials to a list of their leading terms.
Options:
-m:
Do the same thing for a list of polynomial sets. That is, output the set of sets of leading terms.