Macaulay2 » Documentation
Packages » GeometricDecomposability > isUnmixed
next | previous | forward | backward | up | index | toc

isUnmixed -- checks whether an ideal is unmixed



A function that checks whether an ideal $I \subseteq R$ is unmixed, that is, whether the ideal $I$ satisfies $\dim(R/I) = \dim(R/P)$ for all associated primes $P \in {\rm Ass}_R(R/I)$.

The following example uses [SM, Example 1.6].

i1 : R = QQ[x_1..x_5];
i2 : I = ideal(x_1*x_3, x_1*x_4, x_1*x_5, x_2*x_3, x_2*x_4, x_2*x_5);

o2 : Ideal of R
i3 : isUnmixed I

o3 = false


[SM] Hero Saremi and Amir Mafi. Unmixedness and Arithmetic Properties of Matroidal Ideals. Arch. Math. 114 (2020) 299–304.

See also

Ways to use isUnmixed :

For the programmer

The object isUnmixed is a method function.