Macaulay2
»
Documentation
Packages
»
GeometricDecomposability
::
Table of Contents
next | previous | forward | backward | up |
index
|
toc
GeometricDecomposability : Table of Contents
GeometricDecomposability
-- a package to check whether ideals are geometrically vertex decomposable
CheckCM
-- when to perform a Cohen-Macaulay check on the ideal
CheckDegenerate
-- check whether the geometric vertex decomposition is degenerate
CheckUnmixed
-- check whether ideals encountered are unmixed
findLexCompatiblyGVDOrders
-- finds all lexicographic monomial orders $<$ such that the ideal is $<$-compatibly geometrically vertex decomposable
findOneStepGVD
-- for which indeterminates does there exist a geometric vertex decomposition
getGVDIdeal
-- computes the $C_{y,I}$ or $N_{y,I}$ ideal at any point in the GVD recursion tree
initialYForms
-- computes the ideal of initial y-forms
isGeneratedByIndeterminates
-- checks whether the ideal is generated by indeterminates
isGVD
-- checks whether an ideal is geometrically vertex decomposable
IsIdealHomogeneous
-- specify whether an ideal is homogeneous
IsIdealUnmixed
-- specify whether an ideal is unmixed
isLexCompatiblyGVD
-- checks whether an ideal is <-compatibly geometrically vertex decomposable for a given order
isUnmixed
-- checks whether an ideal is unmixed
isWeaklyGVD
-- checks whether an ideal is weakly geometrically vertex decomposable
oneStepGVD
-- computes a geometric vertex decomposition
oneStepGVDCyI
-- computes the ideal $C_{y,I}$ for a given ideal and indeterminate
oneStepGVDNyI
-- computes the ideal $N_{y,I}$ for a given ideal and indeterminate
OnlyDegenerate
-- restrict to degenerate geometric vertex decompositions
OnlyNondegenerate
-- restrict to nondegenerate geometric vertex decompositions
SquarefreeOnly
-- only return the squarefree variables from the generators
UniversalGB
-- whether the generators for an ideal form a universal Gröbner basis