Macaulay2 » Documentation
Packages » IntegralClosure :: icFracP(...,Verbosity=>...)
next | previous | forward | backward | up | index | toc

icFracP(...,Verbosity=>...) -- Prints out the conductor element and the number of intermediate modules it computed.

Description

The main use of the extra information is in computing the integral closure of principal ideals in R, via icPIdeal.
i1 : R=ZZ/3[u,v,x,y]/ideal(u*x^2-v*y^2);
i2 : icFracP(R, Verbosity => 1)
Number of steps: 3,  Conductor Element: x^2

         u*x
o2 = {1, ---}
          y

o2 : List
i3 : S = ZZ/3[x,y,u,v];
i4 : R = S/kernel map(S,S,{x-y,x+y^2,x*y,x^2});
i5 : icFracP(R, Verbosity => 1)
Number of steps: 4,  Conductor Element: x*u*v^2-x*v^3

      u - v  x + y - v
o5 = {-----, ---------, 1}
        x      x + 1

o5 : List

Functions with optional argument named Verbosity:

  • icFracP(...,Verbosity=>...) -- Prints out the conductor element and the number of intermediate modules it computed.
  • idealizer(...,Verbosity=>...) -- see idealizer -- compute Hom(I,I) as a quotient ring
  • integralClosure(...,Verbosity=>...) -- display a certain amount of detail about the computation
  • isPrime(Ideal,Verbosity=>...) -- see isPrime(Ideal) -- whether an ideal is prime
  • makeS2(...,Verbosity=>...) -- see makeS2 -- compute the S2ification of a reduced ring
  • decompose(Ideal,Verbosity=>...) -- see minimalPrimes -- minimal primes of an ideal
  • minimalPrimes(...,Verbosity=>...) -- see minimalPrimes -- minimal primes of an ideal
  • ringFromFractions(...,Verbosity=>...) -- see ringFromFractions -- find presentation for f.g. ring

Further information

  • Default value: 0
  • Function: icFracP -- compute the integral closure in prime characteristic
  • Option key: Verbosity (missing documentation)

The source of this document is in IntegralClosure.m2:2216:0.