Macaulay2 » Documentation
Packages » InvolutiveBases :: isPommaretBasis
next | previous | forward | backward | up | index | toc

isPommaretBasis -- check whether or not a given Janet basis is also a Pommaret basis

Synopsis

Description

i1 : R = QQ[x,y];
i2 : I = ideal(x^3,y^2);

o2 : Ideal of R
i3 : J = janetBasis I

     +----+------+
     | 2  |      |
o3 = |y   |{y}   |
     +----+------+
     |   2|      |
     |x*y |{y}   |
     +----+------+
     | 3  |      |
     |x   |{y, x}|
     +----+------+
     | 2 2|      |
     |x y |{y}   |
     +----+------+

o3 : InvolutiveBasis
i4 : isPommaretBasis J

o4 = true
i5 : R = QQ[x,y];
i6 : I = ideal(x*y,y^2);

o6 : Ideal of R
i7 : J = janetBasis I

     +---+------+
     | 2 |      |
o7 = |y  |{y}   |
     +---+------+
     |x*y|{y, x}|
     +---+------+

o7 : InvolutiveBasis
i8 : isPommaretBasis J

o8 = false

See also

Ways to use isPommaretBasis:

For the programmer

The object isPommaretBasis is a method function.