Macaulay2
»
Documentation
Packages
»
InvolutiveBases
::
Index
next | previous | forward | backward | up |
index
|
toc
InvolutiveBases : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
basisElements
-- extract the matrix of generators from an involutive basis or factor module basis
basisElements(FactorModuleBasis)
-- extract the matrix of generators from an involutive basis or factor module basis
basisElements(InvolutiveBasis)
-- extract the matrix of generators from an involutive basis or factor module basis
FactorModuleBasis
-- the class of all factor module bases
factorModuleBasis
-- enumerate standard monomials
factorModuleBasis(InvolutiveBasis)
-- enumerate standard monomials
invNoetherNormalization
-- Noether normalization
invNoetherNormalization(GroebnerBasis)
-- Noether normalization
invNoetherNormalization(Ideal)
-- Noether normalization
invNoetherNormalization(InvolutiveBasis)
-- Noether normalization
invNoetherNormalization(Matrix)
-- Noether normalization
invNoetherNormalization(Module)
-- Noether normalization
Involutive
-- compute a (usually non-minimal) resolution using involutive bases
InvolutiveBases
-- Methods for Janet bases and Pommaret bases in Macaulay 2
InvolutiveBasis
-- the class of all involutive bases
invReduce
-- compute normal form modulo involutive basis by involutive reduction
invReduce(Matrix,InvolutiveBasis)
-- compute normal form modulo involutive basis by involutive reduction
invReduce(RingElement,InvolutiveBasis)
-- compute normal form modulo involutive basis by involutive reduction
invSyzygies
-- compute involutive basis of syzygies
invSyzygies(InvolutiveBasis)
-- compute involutive basis of syzygies
isPommaretBasis
-- check whether or not a given Janet basis is also a Pommaret basis
isPommaretBasis(InvolutiveBasis)
-- check whether or not a given Janet basis is also a Pommaret basis
janetBasis
-- compute Janet basis for an ideal or a submodule of a free module
janetBasis(Complex,ZZ)
-- compute Janet basis for an ideal or a submodule of a free module
janetBasis(GroebnerBasis)
-- compute Janet basis for an ideal or a submodule of a free module
janetBasis(Ideal)
-- compute Janet basis for an ideal or a submodule of a free module
janetBasis(Matrix)
-- compute Janet basis for an ideal or a submodule of a free module
janetMultVar
-- return table of multiplicative variables for given module elements as determined by Janet division
janetMultVar(List)
-- return table of multiplicative variables for given module elements as determined by Janet division
janetMultVar(Matrix)
-- return table of multiplicative variables for given module elements as determined by Janet division
janetResolution
-- construct a free resolution for a given ideal or module using Janet bases
janetResolution(Ideal)
-- construct a free resolution for a given ideal or module using Janet bases
janetResolution(InvolutiveBasis)
-- construct a free resolution for a given ideal or module using Janet bases
janetResolution(Matrix)
-- construct a free resolution for a given ideal or module using Janet bases
janetResolution(Module)
-- construct a free resolution for a given ideal or module using Janet bases
multVar
-- extract the sets of multiplicative variables for each generator (in several contexts)
multVar(Complex,ZZ)
-- extract the sets of multiplicative variables for each generator (in several contexts)
multVar(FactorModuleBasis)
-- extract the sets of multiplicative variables for each generator (in several contexts)
multVar(InvolutiveBasis)
-- extract the sets of multiplicative variables for each generator (in several contexts)
multVars
-- key in the cache table of a differential in a Janet resolution
PermuteVariables
-- ensure that the last dim(I) var's are algebraically independent modulo I
pommaretMultVar
-- return table of multiplicative variables for given module elements as determined by Pommaret division
pommaretMultVar(List)
-- return table of multiplicative variables for given module elements as determined by Pommaret division
pommaretMultVar(Matrix)
-- return table of multiplicative variables for given module elements as determined by Pommaret division