Description
If N is an ideal, ring element, or list or sequence of ring elements (in the ring of M), then the quotient is by the submodule N*M of M.
If N is a submodule of M, or a list or sequence of submodules, or a vector, then the quotient is by these elements or submodules.
i1 : R = ZZ/173[a..d]
o1 = R
o1 : PolynomialRing
|
i2 : M = ker matrix{{a^3-a*c*d,a*b*c-b^3,a*b*d-b*c^2}}
o2 = image {3} | 0 b3-abc bc2-abd |
{3} | -c2+ad a3-acd 0 |
{3} | b2-ac 0 a3-acd |
3
o2 : R-module, submodule of R
|
i3 : M/a == M/(a*M)
o3 = true
|
i4 : M/M_0
o4 = subquotient ({3} | 0 b3-abc bc2-abd |, {3} | 0 |)
{3} | -c2+ad a3-acd 0 | {3} | -c2+ad |
{3} | b2-ac 0 a3-acd | {3} | b2-ac |
3
o4 : R-module, subquotient of R
|
i5 : M/(R*M_0 + b*M)
o5 = subquotient ({3} | 0 b3-abc bc2-abd |, {3} | 0 0 b4-ab2c b2c2-ab2d |)
{3} | -c2+ad a3-acd 0 | {3} | -c2+ad -bc2+abd a3b-abcd 0 |
{3} | b2-ac 0 a3-acd | {3} | b2-ac b3-abc 0 a3b-abcd |
3
o5 : R-module, subquotient of R
|
i6 : M/(M_0,a*M_1+M_2)
o6 = subquotient ({3} | 0 b3-abc bc2-abd |, {3} | 0 ab3-a2bc+bc2-abd |)
{3} | -c2+ad a3-acd 0 | {3} | -c2+ad a4-a2cd |
{3} | b2-ac 0 a3-acd | {3} | b2-ac a3-acd |
3
o6 : R-module, subquotient of R
|
i7 : presentation oo
o7 = {5} | -1 0 -a3+acd |
{6} | 0 -a -c2+ad |
{6} | 0 -1 b2-ac |
3 3
o7 : Matrix R <-- R
|