Description
i1 : R = QQ[x,y]
o1 = R
o1 : PolynomialRing
|
i2 : p = map(R,QQ)
o2 = map (R, QQ, {})
o2 : RingMap R <-- QQ
|
i3 : f = matrix {{x-y, x+2*y, 3*x-y}};
1 3
o3 : Matrix R <-- R
|
i4 : kernel f
o4 = image {1} | -7 -x-2y |
{1} | -2 x-y |
{1} | 3 0 |
3
o4 : R-module, submodule of R
|
i5 : g = map(R^1,QQ^3,p,f)
o5 = | x-y x+2y 3x-y |
1 3
o5 : Matrix R <-- QQ
|
i6 : g === map(R^1,QQ^3,p,{{x-y, x+2*y, 3*x-y}})
o6 = true
|
i7 : isHomogeneous g
o7 = false
|
i8 : kernel g
o8 = image | -7 |
| -2 |
| 3 |
3
o8 : QQ-module, submodule of QQ
|
i9 : coimage g
o9 = cokernel | -7 |
| -2 |
| 3 |
3
o9 : QQ-module, quotient of QQ
|
i10 : rank oo
o10 = 2
|
If the module N is replaced by null, which is entered automatically between consecutive commas, then a free module will be used for N, whose degrees are obtained by lifting the degrees of the cover of the source of g, minus the degree of g, along the degree map of p
i11 : g2 = map(R^1,,p,f,Degree => {1})
o11 = | x-y x+2y 3x-y |
1 3
o11 : Matrix R <-- QQ
|
i12 : g === g2
o12 = true
|
If N and f are both omitted, along with their commas, then for f the matrix of generators of M is used.
i13 : M' = image f
o13 = image | x-y x+2y 3x-y |
1
o13 : R-module, submodule of R
|
i14 : g3 = map(M',p,Degree => {1})
o14 = {1} | 1 0 7/3 |
{1} | 0 1 2/3 |
{1} | 0 0 0 |
3
o14 : Matrix M' <-- QQ
|
i15 : isHomogeneous g3
o15 = true
|
i16 : kernel g3
o16 = image | -7 |
| -2 |
| 3 |
3
o16 : QQ-module, submodule of QQ
|
i17 : oo == kernel g
o17 = true
|
The degree of the homomorphism enters into the determination of its homogeneity.
i18 : R = QQ[x, Degrees => {{2:1}}];
|
i19 : M = R^1
1
o19 = R
o19 : R-module, free
|
i20 : S = QQ[z];
|
i21 : N = S^1
1
o21 = S
o21 : S-module, free
|
i22 : p = map(R,S,{x},DegreeMap => x -> join(x,x))
o22 = map (R, S, {x})
o22 : RingMap R <-- S
|
i23 : isHomogeneous p
o23 = true
|
i24 : f = matrix {{x^3}}
o24 = | x3 |
1 1
o24 : Matrix R <-- R
|
i25 : g = map(M,N,p,f,Degree => {3,3})
o25 = | x3 |
1 1
o25 : Matrix R <-- S
|
i26 : isHomogeneous g
o26 = true
|
i27 : kernel g
o27 = image 0
1
o27 : S-module, submodule of S
|
i28 : coimage g
1
o28 = S
o28 : S-module, free
|