Macaulay2 » Documentation
Packages » MonodromySolver :: monodromySolve(System,AbstractPoint,List)
next | previous | forward | backward | up | index | toc

monodromySolve(System,AbstractPoint,List) -- the main function of the MonodromySolver package

Synopsis

Description

Most solvers rely on the manual seeding function createSeedPair. The example below demonstrates how one might seed manually when some equations don't have parameters—ie. the projection map onto the variables is non-dominant.

i1 : setRandomSeed 0;
i2 : S = CC[a,b,c];
i3 : R = S[x,w];
i4 : (h, f) = (a*x+b*w+c, 3*x^2 - w + 1);
i5 : x0 = point {{ii_CC,-2}}; -- clearly a zero of f
i6 : l = apply(2,i->random CC);
i7 : p0 = point({append(l,- sum apply(l, x0.Coordinates,(i,x)->i*x))});
i8 : (N, npaths) = monodromySolve(polySystem {h,f},p0,{x0},NumberOfNodes=>3);

Ways to use this method: