i1 : ZZ/65521[x_0..x_4];
|
i2 : f = last graph rationalMap {x_2^2-x_1*x_3, x_1*x_2-x_0*x_3, x_1^2-x_0*x_2, x_0*x_4, x_1*x_4, x_2*x_4, x_3*x_4, x_4^2};
o2 : MultihomogeneousRationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^7)
|
i3 : Phi = rationalMap {f,f};
o3 : MultirationalMap (rational map from 4-dimensional subvariety of PP^4 x PP^7 to PP^7 x PP^7)
|
i4 : Z = source Phi;
o4 : ProjectiveVariety, 4-dimensional subvariety of PP^4 x PP^7
|
i5 : time Phi Z;
-- used 0.0849677s (cpu); 0.0837604s (thread); 0s (gc)
o5 : ProjectiveVariety, 4-dimensional subvariety of PP^7 x PP^7
|
i6 : dim oo, degree oo, degrees oo
o6 = (4, 80, {({0, 2}, 5), ({1, 1}, 33), ({2, 0}, 5)})
o6 : Sequence
|
i7 : time Phi (point Z + point Z + point Z)
-- used 1.27615s (cpu); 0.95437s (thread); 0s (gc)
o7 = 0-dimensional subvariety of PP^7 x PP^7 cut out by 22 hypersurfaces of multi-degrees (0,1)^5 (0,2)^3 (1,0)^5 (1,1)^6 (2,0)^3
o7 : ProjectiveVariety, 0-dimensional subvariety of PP^7 x PP^7
|
i8 : dim oo, degree oo, degrees oo
o8 = (0, 3, {({0, 1}, 5), ({0, 2}, 3), ({1, 0}, 5), ({1, 1}, 6), ({2, 0},
------------------------------------------------------------------------
3)})
o8 : Sequence
|