next | previous | forward | backward | up | index | toc

# factor(MultirationalMap) -- the list of rational maps defining a multi-rational map

## Description

This function is intended for internal use. Use the projectionMaps function instead.

 i1 : ZZ/33331[t_0..t_2,u_0..u_1,Degrees=>{3:{1,0},2:{0,1}}]; i2 : f0 = rationalMap {t_0,t_1,t_2} o2 = -- rational map -- ZZ ZZ source: Proj(-----[t , t , t ]) x Proj(-----[u , u ]) 33331 0 1 2 33331 0 1 ZZ target: Proj(-----[x , x , x ]) 33331 0 1 2 defining forms: { t , 0 t , 1 t 2 } o2 : MultihomogeneousRationalMap (rational map from PP^2 x PP^1 to PP^2) i3 : f1 = rationalMap {u_0,u_1} o3 = -- rational map -- ZZ ZZ source: Proj(-----[t , t , t ]) x Proj(-----[u , u ]) 33331 0 1 2 33331 0 1 ZZ target: Proj(-----[x , x ]) 33331 0 1 defining forms: { u , 0 u 1 } o3 : MultihomogeneousRationalMap (rational map from PP^2 x PP^1 to PP^1) i4 : f2 = rationalMap {t_0*u_1,t_1*u_0} o4 = -- rational map -- ZZ ZZ source: Proj(-----[t , t , t ]) x Proj(-----[u , u ]) 33331 0 1 2 33331 0 1 ZZ target: Proj(-----[x , x ]) 33331 0 1 defining forms: { t u , 0 1 t u 1 0 } o4 : MultihomogeneousRationalMap (rational map from PP^2 x PP^1 to PP^1) i5 : Phi = rationalMap {f0,f1,f2}; o5 : MultirationalMap (rational map from PP^2 x PP^1 to PP^2 x PP^1 x PP^1) i6 : assert(factor Phi === {f0,f1,f2})