i1 : ZZ/33331[t_0..t_2,u_0..u_1,Degrees=>{3:{1,0},2:{0,1}}];
|
i2 : f0 = rationalMap {t_0,t_1,t_2}
o2 = -- rational map --
ZZ ZZ
source: Proj(-----[t , t , t ]) x Proj(-----[u , u ])
33331 0 1 2 33331 0 1
ZZ
target: Proj(-----[x , x , x ])
33331 0 1 2
defining forms: {
t ,
0
t ,
1
t
2
}
o2 : MultihomogeneousRationalMap (rational map from PP^2 x PP^1 to PP^2)
|
i3 : f1 = rationalMap {u_0,u_1}
o3 = -- rational map --
ZZ ZZ
source: Proj(-----[t , t , t ]) x Proj(-----[u , u ])
33331 0 1 2 33331 0 1
ZZ
target: Proj(-----[x , x ])
33331 0 1
defining forms: {
u ,
0
u
1
}
o3 : MultihomogeneousRationalMap (rational map from PP^2 x PP^1 to PP^1)
|
i4 : f2 = rationalMap {t_0*u_1,t_1*u_0}
o4 = -- rational map --
ZZ ZZ
source: Proj(-----[t , t , t ]) x Proj(-----[u , u ])
33331 0 1 2 33331 0 1
ZZ
target: Proj(-----[x , x ])
33331 0 1
defining forms: {
t u ,
0 1
t u
1 0
}
o4 : MultihomogeneousRationalMap (rational map from PP^2 x PP^1 to PP^1)
|
i5 : Phi = rationalMap {f0,f1,f2};
o5 : MultirationalMap (rational map from PP^2 x PP^1 to PP^2 x PP^1 x PP^1)
|
i6 : assert(factor Phi === {f0,f1,f2})
|