next | previous | forward | backward | up | index | toc

# show(MultirationalMap) -- display a multi-rational map

## Synopsis

• Function: show
• Usage:
show Phi
• Inputs:
• Phi,
• Outputs:
• a net, a net of Phi

## Description

 i1 : Phi = inverse first graph last graph rationalMap PP_(ZZ/33331)^(1,3) o1 = Phi o1 : MultirationalMap (birational map from threefold in PP^3 x PP^2 to threefold in PP^3 x PP^2 x PP^2) i2 : time describe Phi -- used 0.283038s (cpu); 0.179752s (thread); 0s (gc) o2 = multi-rational map consisting of 3 rational maps source variety: threefold in PP^3 x PP^2 cut out by 2 hypersurfaces of multi-degree (1,1) target variety: threefold in PP^3 x PP^2 x PP^2 cut out by 7 hypersurfaces of multi-degrees (0,1,1)^3 (1,0,1)^2 (1,1,0)^2 base locus: empty subscheme of PP^3 x PP^2 dominance: true multidegree: {10, 14, 19, 25} degree: 1 degree sequence (map 1/3): [(1,0)] degree sequence (map 2/3): [(0,1), (2,0)] degree sequence (map 3/3): [(0,1), (2,0)] coefficient ring: ZZ/33331 i3 : show Phi o3 = -- multi-rational map -- ZZ ZZ source: subvariety of Proj(-----[x0 , x0 , x0 , x0 ]) x Proj(-----[x1 , x1 , x1 ]) defined by 33331 0 1 2 3 33331 0 1 2 { x0 x1 - x0 x1 + x0 x1 , 1 0 2 1 3 2 x0 x1 - x0 x1 + x0 x1 0 0 1 1 2 2 } ZZ ZZ ZZ target: subvariety of Proj(-----[x0 , x0 , x0 , x0 ]) x Proj(-----[x1 , x1 , x1 ]) x Proj(-----[x2 , x2 , x2 ]) defined by 33331 0 1 2 3 33331 0 1 2 33331 0 1 2 { x1 x2 - x1 x2 , 2 1 1 2 x1 x2 - x1 x2 , 2 0 0 2 x1 x2 - x1 x2 , 1 0 0 1 x0 x2 - x0 x2 + x0 x2 , 1 0 2 1 3 2 x0 x2 - x0 x2 + x0 x2 , 0 0 1 1 2 2 x0 x1 - x0 x1 + x0 x1 , 1 0 2 1 3 2 x0 x1 - x0 x1 + x0 x1 0 0 1 1 2 2 } -- rational map 1/3 -- map 1/3, unique representative: { x0 , 0 x0 , 1 x0 , 2 x0 3 } -- rational map 2/3 -- map 2/3, representative 1/2: { x1 , 0 x1 , 1 x1 2 } map 2/3, representative 2/2: { 2 x0 - x0 x0 , 2 1 3 x0 x0 - x0 x0 , 1 2 0 3 2 x0 - x0 x0 1 0 2 } -- rational map 3/3 -- map 3/3, representative 1/2: { x1 , 0 x1 , 1 x1 2 } map 3/3, representative 2/2: { 2 x0 - x0 x0 , 2 1 3 x0 x0 - x0 x0 , 1 2 0 3 2 x0 - x0 x0 1 0 2 }