Macaulay2 » Documentation
Packages » QuillenSuslin :: getMaxIdeal
next | previous | forward | backward | up | index | toc

getMaxIdeal -- computes a maximal ideal containing a given ideal in a polynomial ring

Synopsis

Description

In absence of an input list, getMaxIdeal yields a maximal ideal containing the input ideal I.
i1 : R = ZZ/3[x,y]

o1 = R

o1 : PolynomialRing
i2 : I = ideal(x*(x-1)*(x-2)*y*(y-1)*(y-2)+1)

            3 3    3       3
o2 = ideal(x y  - x y - x*y  + x*y + 1)

o2 : Ideal of R
i3 : J = getMaxIdeal I

                    2
o3 = ideal (x - y, y  + 1)

o3 : Ideal of R
i4 : isSubset(I,J)

o4 = true

The function isSubset shows that I is contained in our new ideal. To see that J is indeed maximal, consider the codimension and the minimal primes.
i5 : codim J

o5 = 2
i6 : P = minimalPrimes J

                     2
o6 = {ideal (x - y, y  + 1)}

o6 : List
i7 : J == P_0

o7 = true

The optional list argument allows us to restrict our maximal ideal to a polynomial ring defined by a subset of the variables of the ambient ring. Note that the list must contain the variables that appear in the generators of I.
i8 : R = ZZ[x,y,z,a,b,c]

o8 = R

o8 : PolynomialRing
i9 : I = ideal(27,x^2+1)

                 2
o9 = ideal (27, x  + 1)

o9 : Ideal of R
i10 : J = getMaxIdeal(I,{x,y,z})

                    2
o10 = ideal (z, y, x  + 1, 3)

o10 : Ideal of R
i11 : isSubset(I,J)

o11 = true

Ways to use getMaxIdeal :

For the programmer

The object getMaxIdeal is a method function with options.