Description
In absence of an input list, getMaxIdeal yields a maximal ideal containing the input ideal
I.
i1 : R = ZZ/3[x,y]
o1 = R
o1 : PolynomialRing
|
i2 : I = ideal(x*(x-1)*(x-2)*y*(y-1)*(y-2)+1)
3 3 3 3
o2 = ideal(x y - x y - x*y + x*y + 1)
o2 : Ideal of R
|
i3 : J = getMaxIdeal I
2
o3 = ideal (x - y, y + 1)
o3 : Ideal of R
|
i4 : isSubset(I,J)
o4 = true
|
The function
isSubset shows that
I is contained in our new ideal. To see that
J is indeed maximal, consider the codimension and the minimal primes.
i5 : codim J
o5 = 2
|
i6 : P = minimalPrimes J
2
o6 = {ideal (x - y, y + 1)}
o6 : List
|
i7 : J == P_0
o7 = true
|
The optional list argument allows us to restrict our maximal ideal to a polynomial ring defined by a subset of the variables of the ambient ring. Note that the list must contain the variables that appear in the generators of
I.
i8 : R = ZZ[x,y,z,a,b,c]
o8 = R
o8 : PolynomialRing
|
i9 : I = ideal(27,x^2+1)
2
o9 = ideal (27, x + 1)
o9 : Ideal of R
|
i10 : J = getMaxIdeal(I,{x,y,z})
2
o10 = ideal (z, y, x + 1, 3)
o10 : Ideal of R
|
i11 : isSubset(I,J)
o11 = true
|