Macaulay2
»
Documentation
Packages
»
QuillenSuslin
::
Index
next | previous | forward | backward | up |
index
|
toc
QuillenSuslin : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
changeVar
-- computes a change of variables which make the first entry of a unimodular row monic in a specified variable
changeVar(Matrix,List)
-- computes a change of variables which make the first entry of a unimodular row monic in a specified variable
CheckProjective
-- optional input which gives the user the option to check whether the given module is projective
CheckUnimodular
-- optional input which gives the user the option to check whether the given matrix is unimodular
completeMatrix
-- completes a unimodular matrix over a polynomial ring or Laurent polynomial ring to a square invertible matrix
completeMatrix(Matrix)
-- completes a unimodular matrix over a polynomial ring or Laurent polynomial ring to a square invertible matrix
computeFreeBasis
-- computes a free basis of a projective module
computeFreeBasis(...,CheckProjective=>...)
-- computes a free basis of a projective module
computeFreeBasis(Ideal)
-- computes a free basis of a projective module
computeFreeBasis(Module)
-- computes a free basis of a projective module
getMaxIdeal
-- computes a maximal ideal containing a given ideal in a polynomial ring
getMaxIdeal(Ideal)
-- computes a maximal ideal containing a given ideal in a polynomial ring
getMaxIdeal(Ideal,List)
-- computes a maximal ideal containing a given ideal in a polynomial ring
horrocks
-- computes a local solution to the unimodular row problem over a localization at a maximal ideal
horrocks(...,CheckUnimodular=>...)
-- computes a local solution to the unimodular row problem over a localization at a maximal ideal
horrocks(...,Verbose=>...)
-- computes a maximal ideal containing a given ideal in a polynomial ring
horrocks(Matrix,RingElement,Ideal)
-- computes a local solution to the unimodular row problem over a localization at a maximal ideal
isProjective
-- determines if a given module is projective with constant rank over a Noetherian ring
isProjective(Module)
-- determines if a given module is projective with constant rank over a Noetherian ring
isUnimodular
-- determines if a given matrix is unimodular
isUnimodular(Matrix)
-- determines if a given matrix is unimodular
maxMinors
-- computes the ideal generated by the maximal non-vanishing minors of a given matrix
maxMinors(Matrix)
-- computes the ideal generated by the maximal non-vanishing minors of a given matrix
patch
-- patch together local solutions to eliminate a variable
patch(List,RingElement)
-- patch together local solutions to eliminate a variable
qsAlgorithm
-- computes a solution to the unimodular matrix problem
qsAlgorithm(...,CheckUnimodular=>...)
-- computes a solution to the unimodular matrix problem
qsAlgorithm(Matrix)
-- computes a solution to the unimodular matrix problem
qsIsomorphism
-- computes an isomorphism between a free module and a given projective module
qsIsomorphism(...,CheckProjective=>...)
-- computes an isomorphism between a free module and a given projective module
qsIsomorphism(Module)
-- computes an isomorphism between a free module and a given projective module
QuillenSuslin
-- computes a free basis of a projective module over a polynomial ring