Description
Let I_t(M) be the ideal in R generated by the t \times\ t minors of M. If there exists an r such that I_r(M) is non-zero and I_{r+1}(\phi) = 0, then
maxMinors M gives I_r(M).
i1 : R = QQ[x,y]
o1 = R
o1 : PolynomialRing
|
i2 : M = matrix{{x,0},{-y,x},{0,-y}}
o2 = | x 0 |
| -y x |
| 0 -y |
3 2
o2 : Matrix R <-- R
|
i3 : maxMinors M
2 2
o3 = ideal (x , -x*y, y )
o3 : Ideal of R
|
This method returns the unit ideal as the ideal of maximal minors of the zero matrix.
i4 : N = matrix{{0_R}}
o4 = 0
1 1
o4 : Matrix R <-- R
|
i5 : maxMinors N
o5 = ideal 1
o5 : Ideal of R
|