Macaulay2
»
Documentation
Packages
»
ReesAlgebra
::
Index
next | previous | forward | backward | up |
index
|
toc
ReesAlgebra : Index
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
analyticSpread
-- Compute the analytic spread of a module or ideal
analyticSpread(...,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
analyticSpread(...,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
analyticSpread(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
analyticSpread(...,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
analyticSpread(...,Strategy=>...)
-- Choose a strategy for the saturation step
analyticSpread(Ideal)
-- Compute the analytic spread of a module or ideal
analyticSpread(Ideal,RingElement)
-- Compute the analytic spread of a module or ideal
analyticSpread(Module)
-- Compute the analytic spread of a module or ideal
analyticSpread(Module,RingElement)
-- Compute the analytic spread of a module or ideal
associatedGradedRing
-- The normal cone of a subscheme
associatedGradedRing(...,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
associatedGradedRing(...,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
associatedGradedRing(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
associatedGradedRing(...,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
associatedGradedRing(...,Strategy=>...)
-- Choose a strategy for the saturation step
associatedGradedRing(...,Variable=>...)
-- Choose name for variables in the created ring
associatedGradedRing(Ideal)
-- The normal cone of a subscheme
associatedGradedRing(Ideal,RingElement)
-- The normal cone of a subscheme
distinguished
-- Compute the distinguished subvarieties of a pullback, intersection or cone
distinguished(...,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
distinguished(...,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
distinguished(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
distinguished(...,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
distinguished(...,Strategy=>...)
-- Choose a strategy for the saturation step
distinguished(...,Variable=>...)
-- Choose name for variables in the created ring
distinguished(Ideal)
-- Compute the distinguished subvarieties of a pullback, intersection or cone
distinguished(Ideal,Ideal)
-- Compute the distinguished subvarieties of a pullback, intersection or cone
distinguished(RingMap,Ideal)
-- Compute the distinguished subvarieties of a pullback, intersection or cone
expectedReesIdeal
-- symmetric algebra ideal plus jacobian dual
expectedReesIdeal(Ideal)
-- symmetric algebra ideal plus jacobian dual
expectedReesIdeal(Module)
-- symmetric algebra ideal plus jacobian dual
intersectInP
-- Compute distinguished varieties for an intersection in A^n or P^n
intersectInP(...,BasisElementLimit=>...)
-- Option for intersectInP
intersectInP(...,DegreeLimit=>...)
-- Option for intersectInP
intersectInP(...,MinimalGenerators=>...)
-- Option for intersectInP
intersectInP(...,PairLimit=>...)
-- Option for intersectInP
intersectInP(...,Strategy=>...)
-- Option for intersectInP
intersectInP(...,Variable=>...)
-- Option for intersectInP
intersectInP(Ideal,Ideal)
-- Compute distinguished varieties for an intersection in A^n or P^n
isLinearType
-- Determine whether module has linear type
isLinearType(...,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
isLinearType(...,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
isLinearType(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
isLinearType(...,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
isLinearType(...,Strategy=>...)
-- Choose a strategy for the saturation step
isLinearType(Ideal)
-- Determine whether module has linear type
isLinearType(Ideal,RingElement)
-- Determine whether module has linear type
isLinearType(Module)
-- Determine whether module has linear type
isLinearType(Module,RingElement)
-- Determine whether module has linear type
isReduction
-- Determine whether an ideal is a reduction
isReduction(...,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
isReduction(...,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
isReduction(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
isReduction(...,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
isReduction(...,Strategy=>...)
-- Choose a strategy for the saturation step
isReduction(...,Variable=>...)
-- Choose name for variables in the created ring
isReduction(Ideal,Ideal)
-- Determine whether an ideal is a reduction
isReduction(Ideal,Ideal,RingElement)
-- Determine whether an ideal is a reduction
isReduction(Module,Module)
-- Determine whether an ideal is a reduction
isReduction(Module,Module,RingElement)
-- Determine whether an ideal is a reduction
jacobianDual
-- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
jacobianDual(...,Variable=>...)
-- Choose name for variables in the created ring
jacobianDual(Matrix)
-- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
jacobianDual(Matrix,Matrix,Matrix)
-- Computes the 'jacobian dual', part of a method of finding generators for Rees Algebra ideals
minimalReduction
-- Find a minimal reduction of an ideal
minimalReduction(...,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
minimalReduction(...,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
minimalReduction(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
minimalReduction(...,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
minimalReduction(...,Strategy=>...)
-- Choose a strategy for the saturation step
minimalReduction(...,Tries=>...)
-- Set the number of random tries to compute a minimal reduction
minimalReduction(Ideal)
-- Find a minimal reduction of an ideal
multiplicity
-- Compute the Hilbert-Samuel multiplicity of an ideal
multiplicity(...,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
multiplicity(...,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
multiplicity(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
multiplicity(...,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
multiplicity(...,Strategy=>...)
-- Choose a strategy for the saturation step
multiplicity(...,Variable=>...)
-- Option for intersectInP
multiplicity(Ideal)
-- Compute the Hilbert-Samuel multiplicity of an ideal
multiplicity(Ideal,RingElement)
-- Compute the Hilbert-Samuel multiplicity of an ideal
normalCone(Ideal)
-- The normal cone of a subscheme
normalCone(Ideal,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
normalCone(Ideal,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
normalCone(Ideal,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
normalCone(Ideal,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
normalCone(Ideal,RingElement)
-- The normal cone of a subscheme
normalCone(Ideal,RingElement,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
normalCone(Ideal,RingElement,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
normalCone(Ideal,RingElement,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
normalCone(Ideal,RingElement,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
normalCone(Ideal,RingElement,Strategy=>...)
-- Choose a strategy for the saturation step
normalCone(Ideal,RingElement,Variable=>...)
-- Choose name for variables in the created ring
normalCone(Ideal,Strategy=>...)
-- Choose a strategy for the saturation step
normalCone(Ideal,Variable=>...)
-- Choose name for variables in the created ring
PlaneCurveSingularities
-- Using the Rees Algebra to resolve plane curve singularities
reductionNumber
-- Reduction number of one ideal with respect to another
reductionNumber(Ideal,Ideal)
-- Reduction number of one ideal with respect to another
ReesAlgebra
-- Compute Rees algebras and their invariants
reesAlgebra
-- Compute the defining ideal of the Rees Algebra
reesAlgebra(...,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
reesAlgebra(...,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
reesAlgebra(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
reesAlgebra(...,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
reesAlgebra(...,Strategy=>...)
-- Choose a strategy for the saturation step
reesAlgebra(...,Variable=>...)
-- Choose name for variables in the created ring
reesAlgebra(Ideal)
-- Compute the defining ideal of the Rees Algebra
reesAlgebra(Ideal,RingElement)
-- Compute the defining ideal of the Rees Algebra
reesAlgebra(Module)
-- Compute the defining ideal of the Rees Algebra
reesAlgebra(Module,RingElement)
-- Compute the defining ideal of the Rees Algebra
reesIdeal
-- Compute the defining ideal of the Rees Algebra
reesIdeal(...,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
reesIdeal(...,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
reesIdeal(...,Jacobian=>...)
-- Compute the defining ideal of the Rees Algebra
reesIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
reesIdeal(...,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
reesIdeal(...,Strategy=>...)
-- Choose a strategy for the saturation step
reesIdeal(...,Trim=>...)
-- Compute the defining ideal of the Rees Algebra
reesIdeal(...,Variable=>...)
-- Choose name for variables in the created ring
reesIdeal(Ideal)
-- Compute the defining ideal of the Rees Algebra
reesIdeal(Ideal,RingElement)
-- Compute the defining ideal of the Rees Algebra
reesIdeal(Module)
-- Compute the defining ideal of the Rees Algebra
reesIdeal(Module,RingElement)
-- Compute the defining ideal of the Rees Algebra
specialFiber
-- Special fiber of a blowup
specialFiber(...,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
specialFiber(...,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
specialFiber(...,Jacobian=>...)
-- Special fiber of a blowup
specialFiber(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
specialFiber(...,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
specialFiber(...,Strategy=>...)
-- Choose a strategy for the saturation step
specialFiber(...,Trim=>...)
-- Special fiber of a blowup
specialFiber(...,Variable=>...)
-- Choose name for variables in the created ring
specialFiber(Ideal)
-- Special fiber of a blowup
specialFiber(Ideal,RingElement)
-- Special fiber of a blowup
specialFiber(Module)
-- Special fiber of a blowup
specialFiber(Module,RingElement)
-- Special fiber of a blowup
specialFiberIdeal
-- Special fiber of a blowup
specialFiberIdeal(...,BasisElementLimit=>...)
-- Bound the number of Groebner basis elements to compute in the saturation step
specialFiberIdeal(...,DegreeLimit=>...)
-- Bound the degrees considered in the saturation step. Defaults to infinity
specialFiberIdeal(...,Jacobian=>...)
-- Special fiber of a blowup
specialFiberIdeal(...,MinimalGenerators=>...)
-- Whether the saturation step returns minimal generators
specialFiberIdeal(...,PairLimit=>...)
-- Bound the number of s-pairs considered in the saturation step
specialFiberIdeal(...,Strategy=>...)
-- Choose a strategy for the saturation step
specialFiberIdeal(...,Trim=>...)
-- Special fiber of a blowup
specialFiberIdeal(...,Variable=>...)
-- Choose name for variables in the created ring
specialFiberIdeal(Ideal)
-- Special fiber of a blowup
specialFiberIdeal(Ideal,RingElement)
-- Special fiber of a blowup
specialFiberIdeal(Module)
-- Special fiber of a blowup
specialFiberIdeal(Module,RingElement)
-- Special fiber of a blowup
symmetricAlgebraIdeal
-- Ideal of the symmetric algebra of an ideal or module
symmetricAlgebraIdeal(...,VariableBaseName=>...)
-- Ideal of the symmetric algebra of an ideal or module
symmetricAlgebraIdeal(Ideal)
-- Ideal of the symmetric algebra of an ideal or module
symmetricAlgebraIdeal(Module)
-- Ideal of the symmetric algebra of an ideal or module
symmetricKernel
-- Compute the Rees ring of the image of a matrix
symmetricKernel(...,Variable=>...)
-- Choose name for variables in the created ring
symmetricKernel(Matrix)
-- Compute the Rees ring of the image of a matrix
Tries
-- Set the number of random tries to compute a minimal reduction
Trim
-- Choose whether to trim (or find minimal generators) for the ideal or module.
versalEmbedding
-- Compute a versal embedding
versalEmbedding(Ideal)
-- Compute a versal embedding
versalEmbedding(Module)
-- Compute a versal embedding
whichGm
-- Largest Gm satisfied by an ideal
whichGm(Ideal)
-- Largest Gm satisfied by an ideal