Macaulay2 » Documentation
Packages » ReesAlgebra :: reesIdeal(...,MinimalGenerators=>...)
next | previous | forward | backward | up | index | toc

reesIdeal(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators

Description

Here X is of type boolean. Each of these functions involves the computation of a Rees algebra, which may involve a saturation step. This optional argument determines whether or not the output of the saturation step will be forced to have a minimal generating set. This is described in the documentation node for saturate.

See also

Functions with optional argument named MinimalGenerators:

  • compose(Module,Module,Module,MinimalGenerators=>...) -- see compose -- composition as a pairing on Hom-modules
  • End(...,MinimalGenerators=>...) -- see End -- module of endomorphisms
  • Hom(...,MinimalGenerators=>...) -- see Hom -- module of homomorphisms
  • homomorphism'(...,MinimalGenerators=>...) -- see homomorphism' -- get the element of Hom from a homomorphism
  • intersect(Ideal,Ideal,MinimalGenerators=>...) -- see intersect(Ideal,Ideal) -- compute an intersection of a sequence of ideals or modules
  • intersect(Module,Module,MinimalGenerators=>...) -- see intersect(Ideal,Ideal) -- compute an intersection of a sequence of ideals or modules
  • intersectInP(...,MinimalGenerators=>...) -- see intersectInP(...,BasisElementLimit=>...) -- Option for intersectInP
  • quotient'(...,MinimalGenerators=>...) (missing documentation)
  • quotient(...,MinimalGenerators=>...)
  • analyticSpread(...,MinimalGenerators=>...)
  • associatedGradedRing(...,MinimalGenerators=>...)
  • distinguished(...,MinimalGenerators=>...)
  • isLinearType(...,MinimalGenerators=>...)
  • isReduction(...,MinimalGenerators=>...)
  • minimalReduction(...,MinimalGenerators=>...)
  • multiplicity(...,MinimalGenerators=>...)
  • normalCone(Ideal,MinimalGenerators=>...)
  • normalCone(Ideal,RingElement,MinimalGenerators=>...)
  • reesAlgebra(...,MinimalGenerators=>...)
  • reesIdeal(...,MinimalGenerators=>...) -- Whether the saturation step returns minimal generators
  • specialFiber(...,MinimalGenerators=>...)
  • specialFiberIdeal(...,MinimalGenerators=>...)
  • saturate(...,MinimalGenerators=>...)

Further information

  • Default value: true
  • Function: reesIdeal -- Compute the defining ideal of the Rees Algebra
  • Option key: MinimalGenerators -- whether to compute minimal generators and return a trimmed set of generators

The source of this document is in ReesAlgebra.m2:2102:0.